MAGNeto: An Efficient Deep Learning Method for the Extractive Tags
Summarization Problem
- URL: http://arxiv.org/abs/2011.04349v1
- Date: Mon, 9 Nov 2020 11:34:21 GMT
- Title: MAGNeto: An Efficient Deep Learning Method for the Extractive Tags
Summarization Problem
- Authors: Hieu Trong Phung (1 and 2), Anh Tuan Vu (1), Tung Dinh Nguyen (1), Lam
Thanh Do (1 and 2), Giang Nam Ngo (1), Trung Thanh Tran (1) and Ngoc C. L\^e
(1 and 2) ((1) PIXTA Vietnam, Hanoi, Vietnam. (2) Hanoi University of Science
and Technology, Ha Noi, Viet Nam.)
- Abstract summary: We study a new image annotation task named Extractive Tags Summarization (ETS)
The goal is to extract important tags from the context lying in an image and its corresponding tags.
Our proposed solution consists of different widely used blocks like convolutional and self-attention layers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study a new image annotation task named Extractive Tags
Summarization (ETS). The goal is to extract important tags from the context
lying in an image and its corresponding tags. We adjust some state-of-the-art
deep learning models to utilize both visual and textual information. Our
proposed solution consists of different widely used blocks like convolutional
and self-attention layers, together with a novel idea of combining auxiliary
loss functions and the gating mechanism to glue and elevate these fundamental
components and form a unified architecture. Besides, we introduce a loss
function that aims to reduce the imbalance of the training data and a simple
but effective data augmentation technique dedicated to alleviates the effect of
outliers on the final results. Last but not least, we explore an unsupervised
pre-training strategy to further boost the performance of the model by making
use of the abundant amount of available unlabeled data. Our model shows the
good results as 90% $F_\text{1}$ score on the public NUS-WIDE benchmark, and
50% $F_\text{1}$ score on a noisy large-scale real-world private dataset.
Source code for reproducing the experiments is publicly available at:
https://github.com/pixta-dev/labteam
Related papers
- Pseudo Label-Guided Data Fusion and Output Consistency for
Semi-Supervised Medical Image Segmentation [9.93871075239635]
We propose the PLGDF framework, which builds upon the mean teacher network for segmenting medical images with less annotation.
We propose a novel pseudo-label utilization scheme, which combines labeled and unlabeled data to augment the dataset effectively.
Our framework yields superior performance compared to six state-of-the-art semi-supervised learning methods.
arXiv Detail & Related papers (2023-11-17T06:36:43Z) - DatasetEquity: Are All Samples Created Equal? In The Quest For Equity
Within Datasets [4.833815605196965]
This paper presents a novel method for addressing data imbalance in machine learning.
It computes sample likelihoods based on image appearance using deep perceptual embeddings and clustering.
It then uses these likelihoods to weigh samples differently during training with a proposed $bfGeneralized Focal Loss$ function.
arXiv Detail & Related papers (2023-08-19T02:11:49Z) - Learnable Graph Matching: A Practical Paradigm for Data Association [74.28753343714858]
We propose a general learnable graph matching method to address these issues.
Our method achieves state-of-the-art performance on several MOT datasets.
For image matching, our method outperforms state-of-the-art methods on a popular indoor dataset, ScanNet.
arXiv Detail & Related papers (2023-03-27T17:39:00Z) - Improving Contrastive Learning on Imbalanced Seed Data via Open-World
Sampling [96.8742582581744]
We present an open-world unlabeled data sampling framework called Model-Aware K-center (MAK)
MAK follows three simple principles: tailness, proximity, and diversity.
We demonstrate that MAK can consistently improve both the overall representation quality and the class balancedness of the learned features.
arXiv Detail & Related papers (2021-11-01T15:09:41Z) - C$^{4}$Net: Contextual Compression and Complementary Combination Network
for Salient Object Detection [0.0]
We show that feature concatenation works better than other combination methods like multiplication or addition.
Also, joint feature learning gives better results, because of the information sharing during their processing.
arXiv Detail & Related papers (2021-10-22T16:14:10Z) - Jointly Learnable Data Augmentations for Self-Supervised GNNs [0.311537581064266]
We propose GraphSurgeon, a novel self-supervised learning method for graph representation learning.
We take advantage of the flexibility of the learnable data augmentation and introduce a new strategy that augments in the embedding space.
Our finding shows that GraphSurgeon is comparable to six SOTA semi-supervised and on par with five SOTA self-supervised baselines in node classification tasks.
arXiv Detail & Related papers (2021-08-23T21:33:12Z) - Hierarchical Self-Supervised Learning for Medical Image Segmentation
Based on Multi-Domain Data Aggregation [23.616336382437275]
We propose Hierarchical Self-Supervised Learning (HSSL) for medical image segmentation.
We first aggregate a dataset from several medical challenges, then pre-train the network in a self-supervised manner, and finally fine-tune on labeled data.
Compared to learning from scratch, our new method yields better performance on various tasks.
arXiv Detail & Related papers (2021-07-10T18:17:57Z) - Towards Good Practices for Efficiently Annotating Large-Scale Image
Classification Datasets [90.61266099147053]
We investigate efficient annotation strategies for collecting multi-class classification labels for a large collection of images.
We propose modifications and best practices aimed at minimizing human labeling effort.
Simulated experiments on a 125k image subset of the ImageNet100 show that it can be annotated to 80% top-1 accuracy with 0.35 annotations per image on average.
arXiv Detail & Related papers (2021-04-26T16:29:32Z) - How to distribute data across tasks for meta-learning? [59.608652082495624]
We show that the optimal number of data points per task depends on the budget, but it converges to a unique constant value for large budgets.
Our results suggest a simple and efficient procedure for data collection.
arXiv Detail & Related papers (2021-03-15T15:38:47Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.