Discovering Synergistic Drug Combinations for COVID with Biological
Bottleneck Models
- URL: http://arxiv.org/abs/2011.04651v2
- Date: Sat, 28 Nov 2020 18:53:07 GMT
- Title: Discovering Synergistic Drug Combinations for COVID with Biological
Bottleneck Models
- Authors: Wengong Jin, Regina Barzilay, Tommi Jaakkola
- Abstract summary: We propose a emphbiological bottleneck model that jointly learns drug-target interaction and synergy.
The model consists of two parts: a drug-target interaction and target-disease association module.
We experimentally tested the model predictions in the U.S. National Center for Advancing Translational Sciences.
- Score: 38.637412590671865
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug combinations play an important role in therapeutics due to its better
efficacy and reduced toxicity. Recent approaches have applied machine learning
to identify synergistic combinations for cancer, but they are not applicable to
new diseases with limited combination data. Given that drug synergy is closely
tied to biological targets, we propose a \emph{biological bottleneck} model
that jointly learns drug-target interaction and synergy. The model consists of
two parts: a drug-target interaction and target-disease association module.
This design enables the model to \emph{explain} how a biological target affects
drug synergy. By utilizing additional biological information, our model
achieves 0.78 test AUC in drug synergy prediction using only 90 COVID drug
combinations for training. We experimentally tested the model predictions in
the U.S. National Center for Advancing Translational Sciences (NCATS)
facilities and discovered two novel drug combinations (Remdesivir + Reserpine
and Remdesivir + IQ-1S) with strong synergy in vitro.
Related papers
- SynerGPT: In-Context Learning for Personalized Drug Synergy Prediction
and Drug Design [64.69434941796904]
We propose a novel setting and models for in-context drug synergy learning.
We are given a small "personalized dataset" of 10-20 drug synergy relationships in the context of specific cancer cell targets.
Our goal is to predict additional drug synergy relationships in that context.
arXiv Detail & Related papers (2023-06-19T17:03:46Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - RECOVER: sequential model optimization platform for combination drug
repurposing identifies novel synergistic compounds in vitro [46.773794687622825]
We employ a sequential model optimization search applied to a deep learning model to quickly discover highly synergistic drug combinations active against a cancer cell line.
We find that the set of combinations queried by our model is enriched for highly synergistic combinations.
Remarkably, we rediscovered a synergistic drug combination that was later confirmed to be under study within clinical trials.
arXiv Detail & Related papers (2022-02-07T02:54:29Z) - Neural networks for Anatomical Therapeutic Chemical (ATC) [83.73971067918333]
We propose combining multiple multi-label classifiers trained on distinct sets of features, including sets extracted from a Bidirectional Long Short-Term Memory Network (BiLSTM)
Experiments demonstrate the power of this approach, which is shown to outperform the best methods reported in the literature.
arXiv Detail & Related papers (2021-01-22T19:49:47Z) - Hybrid Attentional Memory Network for Computational drug repositioning [0.0]
The cold start problem has always been a major challenge in the field of computational drug repositioning.
We propose the Hybrid Attentional Memory Network (HAMN) model, a deep architecture combines two classes of CF model in a nonlinear manner.
Our proposed HAMN model is superior to other comparison models according to the AUC, AUPR and HR indicators.
arXiv Detail & Related papers (2020-06-12T02:12:32Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
In this paper, we apply transfer learning to the prediction of anti-cancer drug response.
We apply the classic transfer learning framework that trains a prediction model on the source dataset and refines it on the target dataset.
The ensemble transfer learning pipeline is implemented using LightGBM and two deep neural network (DNN) models with different architectures.
arXiv Detail & Related papers (2020-05-13T20:29:48Z) - A Node Embedding Framework for Integration of Similarity-based Drug
Combination Prediction [7.4517333921953215]
We propose a Network Embedding framework in Multiplex Networks (NEMN) to predict synthetic drug combinations.
Based on a multiplex drug similarity network, we offered alternative methods to integrate useful information from different aspects.
For Drug combination prediction, we found seven novel drug combinations which have been validated by external sources.
arXiv Detail & Related papers (2020-02-25T02:24:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.