A Node Embedding Framework for Integration of Similarity-based Drug
Combination Prediction
- URL: http://arxiv.org/abs/2002.10625v1
- Date: Tue, 25 Feb 2020 02:24:47 GMT
- Title: A Node Embedding Framework for Integration of Similarity-based Drug
Combination Prediction
- Authors: Liang Yu, Mingfei Xia, Lin Gao
- Abstract summary: We propose a Network Embedding framework in Multiplex Networks (NEMN) to predict synthetic drug combinations.
Based on a multiplex drug similarity network, we offered alternative methods to integrate useful information from different aspects.
For Drug combination prediction, we found seven novel drug combinations which have been validated by external sources.
- Score: 7.4517333921953215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivation: Drug combination is a sensible strategy for disease treatment by
improving the efficacy and reducing concomitant side effects. Due to the large
number of possible combinations among candidate compounds, exhaustive screening
is prohibitive. Currently, a plenty of studies have focused on predicting
potential drug combinations. However, these methods are not entirely
satisfactory in performance and scalability. Results: In this paper, we
proposed a Network Embedding framework in Multiplex Networks (NEMN) to predict
synthetic drug combinations. Based on a multiplex drug similarity network, we
offered alternative methods to integrate useful information from different
aspects and to decide quantitative importance of each network. To explain the
feasibility of NEMN, we applied our framework to the data of drug-drug
interactions, on which it showed better performance in terms of AUPR and ROC.
For Drug combination prediction, we found seven novel drug combinations which
have been validated by external sources among the top-ranked predictions of our
model.
Related papers
- A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - ALNSynergy: a graph convolutional network with multi-representation alignment for drug synergy prediction [8.316187397380244]
Drug combination refers to the use of two or more drugs to treat a specific disease at the same time.
In this work, we propose ALNSynergy, a graph convolutional network with multi-representation alignment for predicting drug synergy.
arXiv Detail & Related papers (2023-11-27T15:34:14Z) - Emerging Drug Interaction Prediction Enabled by Flow-based Graph Neural
Network with Biomedical Network [69.16939798838159]
We propose EmerGNN, a graph neural network (GNN) that can effectively predict interactions for emerging drugs.
EmerGNN learns pairwise representations of drugs by extracting the paths between drug pairs, propagating information from one drug to the other, and incorporating the relevant biomedical concepts on the paths.
Overall, EmerGNN has higher accuracy than existing approaches in predicting interactions for emerging drugs and can identify the most relevant information on the biomedical network.
arXiv Detail & Related papers (2023-11-15T06:34:00Z) - ADRNet: A Generalized Collaborative Filtering Framework Combining
Clinical and Non-Clinical Data for Adverse Drug Reaction Prediction [49.56476929112382]
Adverse drug reaction (ADR) prediction plays a crucial role in both health care and drug discovery.
We propose ADRNet, a generalized collaborative filtering framework combining clinical and non-clinical data for drug-ADR prediction.
arXiv Detail & Related papers (2023-08-03T11:28:12Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Neural Bandits for Data Mining: Searching for Dangerous Polypharmacy [63.135687276599114]
Some polypharmacies, deemed inappropriate, may be associated with adverse health outcomes such as death or hospitalization.
We propose the OptimNeuralTS strategy to efficiently mine claims datasets and build a predictive model of the association between drug combinations and health outcomes.
Our method can detect up to 72% of PIPs while maintaining an average precision score of 99% using 30 000 time steps.
arXiv Detail & Related papers (2022-12-10T03:43:23Z) - DDoS: A Graph Neural Network based Drug Synergy Prediction Algorithm [0.521420263116111]
We introduce a Graph Neural Network (textitGNN) based model for drug synergy prediction.
In contrast to conventional models, our GNN-based approach learns task-specific drug representations directly from the graph structure of the drugs.
Our work suggests that learning task-specific drug representations and leveraging a diverse dataset is a promising approach to advancing our understanding of drug-drug interaction and synergy.
arXiv Detail & Related papers (2022-10-03T10:16:29Z) - Multi-View Substructure Learning for Drug-Drug Interaction Prediction [69.34322811160912]
We propose a novel multi- view drug substructure network for DDI prediction (MSN-DDI)
MSN-DDI learns chemical substructures from both the representations of the single drug (intra-view) and the drug pair (inter-view) simultaneously and utilizes the substructures to update the drug representation iteratively.
Comprehensive evaluations demonstrate that MSN-DDI has almost solved DDI prediction for existing drugs by achieving a relatively improved accuracy of 19.32% and an over 99% accuracy under the transductive setting.
arXiv Detail & Related papers (2022-03-28T05:44:29Z) - DeepDDS: deep graph neural network with attention mechanism to predict
synergistic drug combinations [0.9854322576538699]
computational screening has become an important way to prioritize drug combinations.
DeepDDS was superior to competitive methods by more than 16% predictive precision.
arXiv Detail & Related papers (2021-07-06T08:25:43Z) - Hybrid Attentional Memory Network for Computational drug repositioning [0.0]
The cold start problem has always been a major challenge in the field of computational drug repositioning.
We propose the Hybrid Attentional Memory Network (HAMN) model, a deep architecture combines two classes of CF model in a nonlinear manner.
Our proposed HAMN model is superior to other comparison models according to the AUC, AUPR and HR indicators.
arXiv Detail & Related papers (2020-06-12T02:12:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.