Complexity from the Reduced Density Matrix: a new Diagnostic for Chaos
- URL: http://arxiv.org/abs/2011.04705v2
- Date: Tue, 24 Aug 2021 19:04:46 GMT
- Title: Complexity from the Reduced Density Matrix: a new Diagnostic for Chaos
- Authors: Arpan Bhattacharyya, S. Shajidul Haque and Eugene H. Kim
- Abstract summary: We take a stride to analyze open quantum systems by using complexity.
We propose a new diagnostic of quantum chaos from complexity based on the reduced density matrix.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate circuit complexity to characterize chaos in multiparticle
quantum systems. In the process, we take a stride to analyze open quantum
systems by using complexity. We propose a new diagnostic of quantum chaos from
complexity based on the reduced density matrix by exploring different types of
quantum circuits. Through explicit calculations on a toy model of two coupled
harmonic oscillators, where one or both of the oscillators are inverted, we
demonstrate that the evolution of complexity is a possible diagnostic of chaos.
Related papers
- Dynamical simulations of many-body quantum chaos on a quantum computer [3.731709137507907]
We study a class of maximally chaotic circuits known as dual unitary circuits.
We show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators.
We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point.
arXiv Detail & Related papers (2024-11-01T17:57:13Z) - Benchmarking quantum chaos from geometric complexity [0.23436632098950458]
We consider a new method to study geometric complexity for interacting non-Gaussian quantum mechanical systems.
Within some limitations, geometric complexity can indeed be a good indicator of quantum chaos.
arXiv Detail & Related papers (2024-10-24T14:04:58Z) - Observation of disorder-free localization and efficient disorder averaging on a quantum processor [117.33878347943316]
We implement an efficient procedure on a quantum processor, leveraging quantum parallelism, to efficiently sample over all disorder realizations.
We observe localization without disorder in quantum many-body dynamics in one and two dimensions.
arXiv Detail & Related papers (2024-10-09T05:28:14Z) - Spread complexity in saddle-dominated scrambling [0.0]
We study the spread complexity of the thermofield double state within emphintegrable systems that exhibit saddle-dominated scrambling.
Applying the Lanczos algorithm, our numerical investigation reveals that the spread complexity in these systems exhibits features reminiscent of emphchaotic systems.
arXiv Detail & Related papers (2023-12-19T20:41:14Z) - Complexity for one-dimensional discrete time quantum walk circuits [0.0]
We compute the complexity for the mixed state density operator derived from a one-dimensional discrete-time quantum walk (DTQW)
The complexity is computed using a two-qubit quantum circuit obtained from canonically purifying the mixed state.
arXiv Detail & Related papers (2023-07-25T12:25:03Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Saturation and recurrence of quantum complexity in random local quantum
dynamics [5.803309695504831]
Quantum complexity is a measure of the minimal number of elementary operations required to prepare a given state or unitary channel.
Brown and Susskind conjectured that the complexity of a chaotic quantum system grows linearly in time up to times exponential in the system size, saturating at a maximal value, and remaining maximally complex until undergoing recurrences at doubly-exponential times.
arXiv Detail & Related papers (2022-05-19T17:42:31Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.