論文の概要: To What Degree Can Language Borders Be Blurred In BERT-based
Multilingual Spoken Language Understanding?
- arxiv url: http://arxiv.org/abs/2011.05007v1
- Date: Tue, 10 Nov 2020 09:59:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 06:28:56.662260
- Title: To What Degree Can Language Borders Be Blurred In BERT-based
Multilingual Spoken Language Understanding?
- Title(参考訳): BERTをベースとした多言語音声言語理解における言語境界の理解
- Authors: Quynh Do, Judith Gaspers, Tobias Roding, Melanie Bradford
- Abstract要約: BERTをベースとした多言語言語理解(SLU)モデルは, 遠隔言語群でもかなりうまく機能するが, 理想的な多言語言語性能にはまだギャップがあることを示す。
本稿では,多言語SLUのための言語共有および言語固有表現を学習するための,BERTに基づく新しい逆モデルアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 7.245261469258502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the question as to what degree a BERT-based multilingual
Spoken Language Understanding (SLU) model can transfer knowledge across
languages. Through experiments we will show that, although it works
substantially well even on distant language groups, there is still a gap to the
ideal multilingual performance. In addition, we propose a novel BERT-based
adversarial model architecture to learn language-shared and language-specific
representations for multilingual SLU. Our experimental results prove that the
proposed model is capable of narrowing the gap to the ideal multilingual
performance.
- Abstract(参考訳): 本稿では,BERTをベースとした多言語音声言語理解(SLU)モデルが言語間で知識を伝達できる程度について述べる。
実験を通して、それは遠くの言語グループでもかなりうまく機能するが、理想的な多言語のパフォーマンスにはまだギャップがあることを示す。
さらに,多言語SLUのための言語共有および言語固有表現を学習するための,BERTに基づく新しい逆モデルアーキテクチャを提案する。
実験の結果,提案モデルは理想的多言語性能にギャップを狭めることができることがわかった。
関連論文リスト
- Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Multilingual BERT has an accent: Evaluating English influences on
fluency in multilingual models [23.62852626011989]
我々は,高次情報源言語における文法構造が低次情報源言語に肥大化したことを示す。
このバイアスは、多言語モデルの流布度とモノリンガルのスペイン語とギリシア語のモデルの流布度を比較する新しい方法によって示される。
論文 参考訳(メタデータ) (2022-10-11T17:06:38Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - Exploring Teacher-Student Learning Approach for Multi-lingual
Speech-to-Intent Classification [73.5497360800395]
複数の言語をサポートするエンドツーエンドシステムを開発した。
我々は、事前訓練された多言語自然言語処理モデルからの知識を利用する。
論文 参考訳(メタデータ) (2021-09-28T04:43:11Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Towards Fully Bilingual Deep Language Modeling [1.3455090151301572]
両言語のパフォーマンスを損なうことなく、2つの遠隔関連言語に対してバイリンガルモデルを事前学習することが可能かを検討する。
フィンランド英語のバイリンガルBERTモデルを作成し、対応するモノリンガルモデルを評価するために使用されるデータセットの性能を評価する。
我々のバイリンガルモデルは、GLUE上のGoogleのオリジナル英語BERTと同等に動作し、フィンランドのNLPタスクにおける単言語フィンランドBERTのパフォーマンスとほぼ一致します。
論文 参考訳(メタデータ) (2020-10-22T12:22:50Z) - Looking for Clues of Language in Multilingual BERT to Improve
Cross-lingual Generalization [56.87201892585477]
多言語BERT (m-BERT) には、言語情報と意味情報の両方が含まれている。
トークン埋め込みを操作することで多言語BERTの出力言語を制御する。
論文 参考訳(メタデータ) (2020-10-20T05:41:35Z) - Identifying Necessary Elements for BERT's Multilinguality [4.822598110892846]
マルチリンガルBERT (mBERT) は高品質なマルチリンガル表現を出力し、効率的なゼロショット転送を可能にする。
本研究の目的は,BERTのアーキテクチャ特性と多言語化に必要な言語の言語特性を同定することである。
論文 参考訳(メタデータ) (2020-05-01T14:27:14Z) - A Study of Cross-Lingual Ability and Language-specific Information in
Multilingual BERT [60.9051207862378]
Multilingual BERTは、言語間転送タスクで驚くほどうまく機能します。
データサイズとコンテキストウィンドウサイズは、転送可能性にとって重要な要素です。
多言語BERTの言語間能力を改善するために、計算的に安価だが効果的なアプローチがある。
論文 参考訳(メタデータ) (2020-04-20T11:13:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。