論文の概要: A step towards neural genome assembly
- arxiv url: http://arxiv.org/abs/2011.05013v1
- Date: Tue, 10 Nov 2020 10:12:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 08:15:31.838326
- Title: A step towards neural genome assembly
- Title(参考訳): 神経ゲノム組立への一歩
- Authors: Lovro Vr\v{c}ek, Petar Veli\v{c}kovi\'c, Mile \v{S}iki\'c
- Abstract要約: 我々はMPNNモデルを最大集約器で訓練し、グラフ単純化のためのいくつかのアルゴリズムを実行する。
アルゴリズムがうまく学習され、トレーニングで使用されるグラフの最大20倍の大きさのグラフにスケールできることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: De novo genome assembly focuses on finding connections between a vast amount
of short sequences in order to reconstruct the original genome. The central
problem of genome assembly could be described as finding a Hamiltonian path
through a large directed graph with a constraint that an unknown number of
nodes and edges should be avoided. However, due to local structures in the
graph and biological features, the problem can be reduced to graph
simplification, which includes removal of redundant information. Motivated by
recent advancements in graph representation learning and neural execution of
algorithms, in this work we train the MPNN model with max-aggregator to execute
several algorithms for graph simplification. We show that the algorithms were
learned successfully and can be scaled to graphs of sizes up to 20 times larger
than the ones used in training. We also test on graphs obtained from real-world
genomic data---that of a lambda phage and E. coli.
- Abstract(参考訳): de novoゲノムアセンブリは、元のゲノムを再構築するために膨大な数の短い配列間の接続を見つけることに焦点を当てている。
ゲノム集合の中心的な問題は、未知の数のノードとエッジを回避すべきという制約のある大きな有向グラフを通してハミルトン経路を見つけることができる。
しかし、グラフの局所構造や生物学的特徴のため、冗長な情報の除去を含むグラフの単純化に還元することができる。
グラフ表現学習とアルゴリズムのニューラル実行の最近の進歩により、我々は最大集約子を用いてMPNNモデルを訓練し、グラフ単純化のためのいくつかのアルゴリズムを実行する。
アルゴリズムがうまく学習され、トレーニングで使用されるグラフの最大20倍の大きさのグラフにスケールできることを示す。
また、ラムダファージと大腸菌の実際のゲノムデータから得られたグラフについても検証した。
関連論文リスト
- Graph Sampling for Scalable and Expressive Graph Neural Networks on Homophilic Graphs [7.658211994479856]
グラフニューラルネットワーク(GNN)は多くのグラフ機械学習タスクに優れるが、大規模ネットワークへのスケーリングでは課題に直面している。
グラフ構造を保存するために特徴ホモフィリーを利用する新しいグラフサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-22T00:30:31Z) - Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNは、各ノードの隣人からのメッセージを集約することで、入力グラフ内の各ノードの表現を反復的に更新する。
MPNNは、あまりスパースではないため、すぐに大きなグラフの禁止になるかもしれない。
本稿では,入力グラフを交差するコミュニティグラフ (ICG) として近似することを提案する。
論文 参考訳(メタデータ) (2024-05-31T09:26:26Z) - HeteroMILE: a Multi-Level Graph Representation Learning Framework for Heterogeneous Graphs [13.01983932286923]
異種グラフ上のノードのマルチレベル埋め込みフレームワーク(HeteroMILE)を提案する。
HeteroMILEは、グラフを埋め込む前に、グラフのバックボーン構造を保ちながら、大きなグラフを小さなサイズに繰り返し調整する。
その後、ヘテロジニアスグラフ畳み込みニューラルネットワークを用いて、元のグラフへの粗い埋め込みを洗練する。
論文 参考訳(メタデータ) (2024-03-31T22:22:10Z) - Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - ADA-GAD: Anomaly-Denoised Autoencoders for Graph Anomaly Detection [84.0718034981805]
我々はAnomaly-Denoized Autoencoders for Graph Anomaly Detection (ADA-GAD)という新しいフレームワークを導入する。
第1段階では,異常レベルを低減したグラフを生成する学習自由な異常化拡張法を設計する。
次の段階では、デコーダは元のグラフで検出するために再訓練される。
論文 参考訳(メタデータ) (2023-12-22T09:02:01Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - FoSR: First-order spectral rewiring for addressing oversquashing in GNNs [0.0]
グラフニューラルネットワーク(GNN)は、グラフのエッジに沿ってメッセージを渡すことによって、グラフデータの構造を活用することができる。
本稿では,グラフにエッジを体系的に付加することで過疎化を防止する計算効率のよいアルゴリズムを提案する。
提案アルゴリズムは,いくつかのグラフ分類タスクにおいて,既存のグラフリウィリング手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-21T07:58:03Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。