論文の概要: HeteroMILE: a Multi-Level Graph Representation Learning Framework for Heterogeneous Graphs
- arxiv url: http://arxiv.org/abs/2404.00816v1
- Date: Sun, 31 Mar 2024 22:22:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 01:41:21.579878
- Title: HeteroMILE: a Multi-Level Graph Representation Learning Framework for Heterogeneous Graphs
- Title(参考訳): HeteroMILE: 異種グラフのためのマルチレベルグラフ表現学習フレームワーク
- Authors: Yue Zhang, Yuntian He, Saket Gurukar, Srinivasan Parthasarathy,
- Abstract要約: 異種グラフ上のノードのマルチレベル埋め込みフレームワーク(HeteroMILE)を提案する。
HeteroMILEは、グラフを埋め込む前に、グラフのバックボーン構造を保ちながら、大きなグラフを小さなサイズに繰り返し調整する。
その後、ヘテロジニアスグラフ畳み込みニューラルネットワークを用いて、元のグラフへの粗い埋め込みを洗練する。
- 参考スコア(独自算出の注目度): 13.01983932286923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous graphs are ubiquitous in real-world applications because they can represent various relationships between different types of entities. Therefore, learning embeddings in such graphs is a critical problem in graph machine learning. However, existing solutions for this problem fail to scale to large heterogeneous graphs due to their high computational complexity. To address this issue, we propose a Multi-Level Embedding framework of nodes on a heterogeneous graph (HeteroMILE) - a generic methodology that allows contemporary graph embedding methods to scale to large graphs. HeteroMILE repeatedly coarsens the large sized graph into a smaller size while preserving the backbone structure of the graph before embedding it, effectively reducing the computational cost by avoiding time-consuming processing operations. It then refines the coarsened embedding to the original graph using a heterogeneous graph convolution neural network. We evaluate our approach using several popular heterogeneous graph datasets. The experimental results show that HeteroMILE can substantially reduce computational time (approximately 20x speedup) and generate an embedding of better quality for link prediction and node classification.
- Abstract(参考訳): 異種グラフは、様々な種類の実体の間の様々な関係を表現することができるため、現実世界の応用においてユビキタスである。
したがって、そのようなグラフへの埋め込みを学習することは、グラフ機械学習において重要な問題である。
しかし、この問題の既存の解は計算量が多いため、大きな不均一グラフにスケールできない。
この問題に対処するため,異種グラフ(HeteroMILE)上のノードのマルチレベル埋め込みフレームワークを提案する。
HeteroMILEは、グラフのバックボーン構造を埋め込む前に、大きなグラフを小さなサイズに繰り返し調整し、時間を要する処理操作を避けることで、計算コストを効果的に削減する。
その後、ヘテロジニアスグラフ畳み込みニューラルネットワークを用いて、元のグラフへの粗い埋め込みを洗練する。
一般的な異種グラフデータセットを用いて,本手法の評価を行った。
実験の結果,HeteroMILEは計算時間(約20倍の高速化)を大幅に短縮し,リンク予測やノード分類に優れた品質の埋め込みを生成することができた。
関連論文リスト
- Learning on Large Graphs using Intersecting Communities [13.053266613831447]
MPNNは、各ノードの隣人からのメッセージを集約することで、入力グラフ内の各ノードの表現を反復的に更新する。
MPNNは、あまりスパースではないため、すぐに大きなグラフの禁止になるかもしれない。
本稿では,入力グラフを交差するコミュニティグラフ (ICG) として近似することを提案する。
論文 参考訳(メタデータ) (2024-05-31T09:26:26Z) - Robust Graph Structure Learning under Heterophily [12.557639223778722]
本稿では、下流タスクのための異種データから高品質なグラフを実現するための、新しい頑健なグラフ構造学習法を提案する。
まず,そのノードの特徴に構造情報をエンコードすることで,各ノードが近隣ノードとより区別されるようにハイパスフィルタを適用する。
そして、異なるレベルのノイズを特徴付ける適応ノルムを持つ頑健なグラフを学習する。
論文 参考訳(メタデータ) (2024-03-06T12:29:13Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
学習対応は、不均一な対応分布と低い不整合率で設定された初期対応から正しい対応を見つけることを目的としている。
最近の進歩は、通常、グラフニューラルネットワーク(GNN)を使用して単一のタイプのグラフを構築したり、グローバルなグラフに局所グラフをスタックしてタスクを完了させる。
本稿では,複数の補完グラフを効果的に組み合わせるためのMGNetを提案する。
論文 参考訳(メタデータ) (2024-01-10T07:58:44Z) - GraphMaker: Can Diffusion Models Generate Large Attributed Graphs? [7.330479039715941]
ノード属性を持つ大規模グラフは、様々な現実世界のアプリケーションでますます一般的になっている。
従来のグラフ生成法は、これらの複雑な構造を扱う能力に制限がある。
本稿では,大きな属性グラフを生成するために特別に設計された新しい拡散モデルであるGraphMakerを紹介する。
論文 参考訳(メタデータ) (2023-10-20T22:12:46Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Beyond Homophily: Reconstructing Structure for Graph-agnostic Clustering [15.764819403555512]
グラフを好適なGNNモデルが見つかる前に、まずホモ親和性あるいはヘテロ親和性として識別することは不可能である。
本稿では,グラフ再構成,混合フィルタ,二重グラフクラスタリングネットワークという3つの重要な要素を含むグラフクラスタリング手法を提案する。
我々の手法は異種グラフ上で他者を支配している。
論文 参考訳(メタデータ) (2023-05-03T01:49:01Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
グラフの生成は、非ユークリッド構造の複雑な性質を理解する必要がある実世界のタスクにとって大きな課題である。
本稿では,拡散過程の最終グラフ構造を明示的に学習することにより,グラフのトポロジーをモデル化する生成フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-07T17:07:46Z) - Graph Coarsening with Neural Networks [8.407217618651536]
本稿では、粗いアルゴリズムの品質を測定するためのフレームワークを提案し、目標に応じて、粗いグラフ上のLaplace演算子を慎重に選択する必要があることを示す。
粗いグラフに対する現在のエッジウェイト選択が準最適である可能性が示唆され、グラフニューラルネットワークを用いて重み付けマップをパラメータ化し、教師なし方法で粗い品質を改善するよう訓練する。
論文 参考訳(メタデータ) (2021-02-02T06:50:07Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。