Decoupled Appearance and Motion Learning for Efficient Anomaly Detection
in Surveillance Video
- URL: http://arxiv.org/abs/2011.05054v2
- Date: Thu, 12 Nov 2020 08:56:57 GMT
- Title: Decoupled Appearance and Motion Learning for Efficient Anomaly Detection
in Surveillance Video
- Authors: Bo Li, Sam Leroux, Pieter Simoens
- Abstract summary: We propose a new neural network architecture that learns the normal behavior in a purely unsupervised fashion.
Our model can process 16 to 45 times more frames per second than related approaches.
- Score: 9.80717374118619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automating the analysis of surveillance video footage is of great interest
when urban environments or industrial sites are monitored by a large number of
cameras. As anomalies are often context-specific, it is hard to predefine
events of interest and collect labelled training data. A purely unsupervised
approach for automated anomaly detection is much more suitable. For every
camera, a separate algorithm could then be deployed that learns over time a
baseline model of appearance and motion related features of the objects within
the camera viewport. Anything that deviates from this baseline is flagged as an
anomaly for further analysis downstream. We propose a new neural network
architecture that learns the normal behavior in a purely unsupervised fashion.
In contrast to previous work, we use latent code predictions as our anomaly
metric. We show that this outperforms reconstruction-based and frame
prediction-based methods on different benchmark datasets both in terms of
accuracy and robustness against changing lighting and weather conditions. By
decoupling an appearance and a motion model, our model can also process 16 to
45 times more frames per second than related approaches which makes our model
suitable for deploying on the camera itself or on other edge devices.
Related papers
- Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
We explore the task of generating future sensor observations conditioned on the past.
We leverage the large-scale pretraining of image diffusion models which can handle multi-modality.
We create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes.
arXiv Detail & Related papers (2024-04-17T16:56:31Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Video Anomaly Detection using GAN [0.0]
This thesis study aims to offer the solution for this use case so that human resources won't be required to keep an eye out for any unusual activity in the surveillance system records.
We have developed a novel generative adversarial network (GAN) based anomaly detection model.
arXiv Detail & Related papers (2023-11-23T16:41:30Z) - Learning Robust Multi-Scale Representation for Neural Radiance Fields
from Unposed Images [65.41966114373373]
We present an improved solution to the neural image-based rendering problem in computer vision.
The proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time.
arXiv Detail & Related papers (2023-11-08T08:18:23Z) - A Lightweight Video Anomaly Detection Model with Weak Supervision and Adaptive Instance Selection [14.089888316857426]
This paper focuses on weakly supervised video anomaly detection.
We develop a lightweight video anomaly detection model.
We show that our model can achieve comparable or even superior AUC score compared to the state-of-the-art methods.
arXiv Detail & Related papers (2023-10-09T01:23:08Z) - Future Video Prediction from a Single Frame for Video Anomaly Detection [0.38073142980732994]
Video anomaly detection (VAD) is an important but challenging task in computer vision.
We introduce the task of future frame prediction proxy-task, as a novel proxy-task for video anomaly detection.
This proxy-task alleviates the challenges of previous methods in learning longer motion patterns.
arXiv Detail & Related papers (2023-08-15T14:04:50Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Multi-Contextual Predictions with Vision Transformer for Video Anomaly
Detection [22.098399083491937]
understanding of thetemporal context of a video plays a vital role in anomaly detection.
We design a transformer model with three different contextual prediction streams: masked, whole and partial.
By learning to predict the missing frames of consecutive normal frames, our model can effectively learn various normality patterns in the video.
arXiv Detail & Related papers (2022-06-17T05:54:31Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
We propose a network with attention modules to learn contrastive features for video salient object detection.
A co-attention formulation is utilized to combine the low-level and high-level features.
We show that the proposed method requires less computation, and performs favorably against the state-of-the-art approaches.
arXiv Detail & Related papers (2021-11-03T17:40:32Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
We propose a novel and robust unsupervised video anomaly detection method by frame prediction with proper design.
Our proposed method obtains the frame-level AUROC score of 88.3% on the CUHK Avenue dataset.
arXiv Detail & Related papers (2020-11-05T11:34:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.