Randomizing multi-product formulas for Hamiltonian simulation
- URL: http://arxiv.org/abs/2101.07808v5
- Date: Fri, 30 Sep 2022 10:35:42 GMT
- Title: Randomizing multi-product formulas for Hamiltonian simulation
- Authors: Paul K. Faehrmann, Mark Steudtner, Richard Kueng, Maria Kieferova,
Jens Eisert
- Abstract summary: We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
- Score: 2.2049183478692584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum simulation, the simulation of quantum processes on quantum computers,
suggests a path forward for the efficient simulation of problems in
condensed-matter physics, quantum chemistry, and materials science. While the
majority of quantum simulation algorithms are deterministic, a recent surge of
ideas has shown that randomization can greatly benefit algorithmic performance.
In this work, we introduce a scheme for quantum simulation that unites the
advantages of randomized compiling on the one hand and higher-order
multi-product formulas, as they are used for example in
linear-combination-of-unitaries (LCU) algorithms or quantum error mitigation,
on the other hand. In doing so, we propose a framework of randomized sampling
that is expected to be useful for programmable quantum simulators and present
two new multi-product formula algorithms tailored to it. Our framework reduces
the circuit depth by circumventing the need for oblivious amplitude
amplification required by the implementation of multi-product formulas using
standard LCU methods, rendering it especially useful for early quantum
computers used to estimate the dynamics of quantum systems instead of
performing full-fledged quantum phase estimation. Our algorithms achieve a
simulation error that shrinks exponentially with the circuit depth. To
corroborate their functioning, we prove rigorous performance bounds as well as
the concentration of the randomized sampling procedure. We demonstrate the
functioning of the approach for several physically meaningful examples of
Hamiltonians, including fermionic systems and the Sachdev-Ye-Kitaev model, for
which the method provides a favorable scaling in the effort.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Compact quantum algorithms for time-dependent differential equations [0.0]
We build on an idea based on linear combination of unitaries to simulate non-unitary, non-Hermitian quantum systems.
We generate hybrid quantum-classical algorithms that efficiently perform iterative matrix-vector multiplication and matrix inversion operations.
arXiv Detail & Related papers (2024-05-16T02:14:58Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Simulating Hamiltonian dynamics in a programmable photonic quantum
processor using linear combinations of unitary operations [4.353492002036882]
We modify the multi-product Trotterization and combine it with the oblivious amplitude amplification to simultaneously reach a high simulation precision and high success probability.
We experimentally implement the modified multi-product algorithm in an integrated-photonics programmable quantum simulator in silicon.
arXiv Detail & Related papers (2022-11-12T18:49:41Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Logical Abstractions for Noisy Variational Quantum Algorithm Simulation [25.515765956985188]
Existing quantum circuit simulators do not address the common traits of variational algorithms.
We present a quantum circuit simulation toolchain based on logical abstractions targeted for simulating variational algorithms.
arXiv Detail & Related papers (2021-03-31T17:20:13Z) - Optimal quantum simulation of open quantum systems [1.9551668880584971]
Digital quantum simulation on quantum systems require algorithms that can be implemented using finite quantum resources.
Recent studies have demonstrated digital quantum simulation of open quantum systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We develop quantum circuits for optimal simulation of Markovian and Non-Markovian open quantum systems.
arXiv Detail & Related papers (2020-12-14T14:00:36Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer.
Here, we propose an adaptive approach to construct a low-depth time evolution circuit.
Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
arXiv Detail & Related papers (2020-11-10T18:00:42Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.