論文の概要: Filtered Manifold Alignment
- arxiv url: http://arxiv.org/abs/2011.05716v1
- Date: Wed, 11 Nov 2020 11:39:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 00:35:21.557368
- Title: Filtered Manifold Alignment
- Title(参考訳): フィルタマニフォールドアライメント
- Authors: Stefan Dernbach and Don Towsley
- Abstract要約: ドメイン適応は、あるドメイン内のデータを活用して別のドメインでの学習を促進するために、転送学習において不可欠なタスクである。
そこで本研究では,2つの空間を接合した低次元空間にソース領域とターゲット領域を投影・フィルタリングする2段階のアプローチに基づく,新しい半教師付き多様体アライメント手法を提案する。
- 参考スコア(独自算出の注目度): 16.74626042261441
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain adaptation is an essential task in transfer learning to leverage data
in one domain to bolster learning in another domain. In this paper, we present
a new semi-supervised manifold alignment technique based on a two-step approach
of projecting and filtering the source and target domains to low dimensional
spaces followed by joining the two spaces. Our proposed approach, filtered
manifold alignment (FMA), reduces the computational complexity of previous
manifold alignment techniques, is flexible enough to align domains with
completely disparate sets of feature and demonstrates state-of-the-art
classification accuracy on multiple benchmark domain adaptation tasks composed
of classifying real world image datasets.
- Abstract(参考訳): ドメイン適応は、あるドメイン内のデータを活用して別のドメインでの学習を促進するために、トランスファー学習において不可欠なタスクです。
本稿では,2つの空間を接合した低次元空間にソース領域とターゲット領域を投影・フィルタリングする2段階のアプローチに基づく,新しい半教師付き多様体アライメント手法を提案する。
提案手法は,従来の多様体アライメント手法の計算複雑性を低減し,完全に異なる特徴セットでドメインを整合させるほど柔軟であり,実世界の画像データセットを分類した複数のベンチマーク領域適応タスクに対して,最先端の分類精度を示す。
関連論文リスト
- Compositional Semantic Mix for Domain Adaptation in Point Cloud
Segmentation [65.78246406460305]
合成意味混合は、ポイントクラウドセグメンテーションのための最初の教師なし領域適応技術である。
本稿では、ソースドメイン(例えば合成)からの点雲とターゲットドメイン(例えば実世界)からの点雲を同時に処理できる2分岐対称ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-08-28T14:43:36Z) - CDA: Contrastive-adversarial Domain Adaptation [11.354043674822451]
我々はtextbfContrastive-adversarial textbfDomain textbfAdaptation textbf(CDA) と呼ばれるドメイン適応のための2段階モデルを提案する。
逆成分はドメインレベルのアライメントを促進するが、2段階のコントラスト学習はクラス情報を利用してドメイン間の高いクラス内コンパクト性を実現する。
論文 参考訳(メタデータ) (2023-01-10T07:43:21Z) - Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation [31.150256154504696]
Unsupervised Domain Adaptation (UDA)は、限られた実験データセットから現実の制約のないドメインへのディープラーニングの展開を促進する。
ほとんどのUDAアプローチは、共通の埋め込み空間内の機能を整列させ、ターゲット予測に共有分類器を適用する。
本稿では,異なる領域に着目した2つの個別空間における特徴アライメントを同時に実施し,各領域に対してドメイン指向の分類器を作成することを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:38:37Z) - ML-BPM: Multi-teacher Learning with Bidirectional Photometric Mixing for
Open Compound Domain Adaptation in Semantic Segmentation [78.19743899703052]
オープン化合物ドメイン適応(OCDA)は、ターゲットドメインを複数の未知の同質体の化合物とみなしている。
目的とするサブドメインに適応するために,双方向光度ミキシングを用いたマルチテキサフレームワークを提案する。
適応蒸留を行い、学生モデルを学習し、整合性正規化を適用して生徒の一般化を改善する。
論文 参考訳(メタデータ) (2022-07-19T03:30:48Z) - Multi-Level Features Contrastive Networks for Unsupervised Domain
Adaptation [6.934905764152813]
教師なしのドメイン適応は、ラベル付きソースドメインからモデルをトレーニングし、ラベルなしのターゲットドメインで予測することを目的としています。
既存のメソッドは2つのドメインをドメインレベルに直接アライメントするか、あるいは深い機能に基づいてクラスレベルのドメインアライメントを実行する傾向があります。
本稿では,クラスレベルのアライメント手法について述べる。
論文 参考訳(メタデータ) (2021-09-14T09:23:27Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
マルチソースドメイン適応(MSDA)は、複数のラベル付きソースドメインからラベルなしターゲットドメインへのタスク知識の転送を扱う。
ラベル管理下のドメインを暗黙的に整列させる深層モデルが観察されるMSDAに対して、異なる視点を提示する。
論文 参考訳(メタデータ) (2021-03-20T12:44:13Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
深層畳み込みニューラルネットワーク(CNN)内のソースドメインとターゲットドメインにセマンティックセグメンテーションネットワークを適用する既存の技術は、対象ドメイン自身や推定カテゴリ内のクラス間変異を考慮していない。
学習可能なクラスタリングモジュールと、クロスドメイングルーピングとアライメントと呼ばれる新しいドメイン適応フレームワークを導入する。
本手法はセマンティクスセグメンテーションにおける適応性能を一貫して向上させ,様々なドメイン適応設定において最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-15T11:36:21Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
部分ドメイン適応(PDA)は、ソースドメインラベル空間がターゲットドメインを置き換えるとき、現実的で困難な問題を扱う。
本稿では,2つの領域にまたがる関連カテゴリを整合させる適応的知識伝達フレームワーク(A$2KT)を提案する。
論文 参考訳(メタデータ) (2020-08-27T00:53:43Z) - Cross-domain Detection via Graph-induced Prototype Alignment [114.8952035552862]
カテゴリレベルのドメインアライメントを求めるグラフ誘発プロトタイプアライメント(GPA)フレームワークを提案する。
さらに,クラス不均衡がドメイン適応に与える影響を軽減するために,クラス重み付きコントラスト損失を設計する。
我々のアプローチは、既存の手法よりも顕著なマージンで優れています。
論文 参考訳(メタデータ) (2020-03-28T17:46:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。