Anticipatory Navigation in Crowds by Probabilistic Prediction of
Pedestrian Future Movements
- URL: http://arxiv.org/abs/2011.06235v1
- Date: Thu, 12 Nov 2020 07:18:20 GMT
- Title: Anticipatory Navigation in Crowds by Probabilistic Prediction of
Pedestrian Future Movements
- Authors: Weiming Zhi, Tin Lai, Lionel Ott, Fabio Ramos
- Abstract summary: Process Anticipatory Navigation (SPAN) is a framework that enables nonholonomic robots to navigate in environments with crowds.
SPAN predicts continuous-time processes to model future movement of pedestrians.
We demonstrate the capability of SPAN in crowded simulation environments, as well as with a real-world pedestrian dataset.
- Score: 33.37913533544612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Critical for the coexistence of humans and robots in dynamic environments is
the capability for agents to understand each other's actions, and anticipate
their movements. This paper presents Stochastic Process Anticipatory Navigation
(SPAN), a framework that enables nonholonomic robots to navigate in
environments with crowds, while anticipating and accounting for the motion
patterns of pedestrians. To this end, we learn a predictive model to predict
continuous-time stochastic processes to model future movement of pedestrians.
Anticipated pedestrian positions are used to conduct chance constrained
collision-checking, and are incorporated into a time-to-collision control
problem. An occupancy map is also integrated to allow for probabilistic
collision-checking with static obstacles. We demonstrate the capability of SPAN
in crowded simulation environments, as well as with a real-world pedestrian
dataset.
Related papers
- TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Conditioned Human Trajectory Prediction using Iterative Attention Blocks [70.36888514074022]
We present a simple yet effective pedestrian trajectory prediction model aimed at pedestrians positions prediction in urban-like environments.
Our model is a neural-based architecture that can run several layers of attention blocks and transformers in an iterative sequential fashion.
We show that without explicit introduction of social masks, dynamical models, social pooling layers, or complicated graph-like structures, it is possible to produce on par results with SoTA models.
arXiv Detail & Related papers (2022-06-29T07:49:48Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - SFMGNet: A Physics-based Neural Network To Predict Pedestrian
Trajectories [2.862893981836593]
We present a physics-based neural network to predict pedestrian trajectories.
We quantitatively and qualitatively evaluate the model with respect to realistic prediction, prediction performance and prediction "interpretability"
Initial results suggest, the model even when solely trained on a synthetic dataset, can predict realistic and interpretable trajectories with better than state-of-the-art accuracy.
arXiv Detail & Related papers (2022-02-06T14:58:09Z) - Pedestrian Trajectory Prediction via Spatial Interaction Transformer
Network [7.150832716115448]
In traffic scenes, when encountering with oncoming people, pedestrians may make sudden turns or stop immediately.
To predict such unpredictable trajectories, we can gain insights into the interaction between pedestrians.
We present a novel generative method named Spatial Interaction Transformer (SIT), which learns the correlation of pedestrian trajectories through attention mechanisms.
arXiv Detail & Related papers (2021-12-13T13:08:04Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Learning Sparse Interaction Graphs of Partially Observed Pedestrians for
Trajectory Prediction [0.3025231207150811]
Multi-pedestrian trajectory prediction is an indispensable safety element of autonomous systems that interact with crowds in unstructured environments.
We propose Gumbel Social Transformer, in which an Edge Gumbel Selector samples a sparse graph of partially observed pedestrians at each time step.
We demonstrate that our model overcomes the potential problems caused by the assumptions, and our approach outperforms the related works in benchmark evaluation.
arXiv Detail & Related papers (2021-07-15T00:45:11Z) - Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments [10.345048137438623]
We introduce a novel trajectory prediction model based on recurrent neural networks (RNN)
We then incorporate the trajectory prediction model into a decentralized model predictive control (MPC) framework for multi-robot collision avoidance.
arXiv Detail & Related papers (2021-02-10T11:11:08Z) - SCAN: A Spatial Context Attentive Network for Joint Multi-Agent Intent
Prediction [4.507860128918788]
textbfSCAN encodes the influence of spatially close neighbors using a novel spatial attention mechanism.
Our approach can also quantitatively outperform state of the art trajectory prediction methods in terms of accuracy of predicted intent.
arXiv Detail & Related papers (2021-01-29T23:35:00Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.