論文の概要: Analysis of COVID-19 evolution in Senegal: impact of health care
capacity
- arxiv url: http://arxiv.org/abs/2011.06278v1
- Date: Thu, 12 Nov 2020 09:33:59 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 07:44:59.837473
- Title: Analysis of COVID-19 evolution in Senegal: impact of health care
capacity
- Title(参考訳): セネガルにおける新型コロナウイルスの進化 : 医療能力の影響
- Authors: Mouhamed M. Fall, Babacar M. Ndiaye, Ousmane Seydi, Diaraf Seck
- Abstract要約: セネガル当局の対応を考慮し、感染者の増加を予想する。
医療能力と新規入院者のフラックスによらず、圧倒的な被害を避けるための条件が提供される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider a compartmental model from which we incorporate a time-dependent
health care capacity having a logistic growth. This allows us to take into
account the Senegalese authorities response in anticipating the growing number
of infected cases. We highlight the importance of anticipation and timing to
avoid overwhelming that could impact considerably the treatment of patients and
the well-being of health care workers. A condition, depending on the health
care capacity and the flux of new hospitalized individuals, to avoid possible
overwhelming is provided. We also use machine learning approach to project
forward the cumulative number of cases from March 02, 2020, until 1st December,
2020.
- Abstract(参考訳): 我々は,ロジスティック成長を伴う時間依存型医療能力を取り入れた区画モデルを考える。
これにより、セネガル当局の対応を考慮に入れ、感染者の増加を予測できます。
我々は,患者の治療や医療従事者の幸福感に大きく影響を及ぼすような過大な事態を避けるための予測とタイミングの重要性を強調した。
医療能力や新規入院者の流入状況に応じて、圧倒的な可能性を避けるための条件が設けられている。
また,2020年3月02日から12月1日までの累積症例数を予測するために,機械学習アプローチも使用しています。
関連論文リスト
- Machine Learning for Deferral of Care Prediction [4.436632973105494]
人口の継続的なケア先延ばしは、人口の健康と複雑な健康問題が減少し、長期的には社会的・財政的なコストが上昇する可能性がある。
マイノリティと脆弱な人口は、社会経済的要因によるケア遅延のリスクが高い。
現在、多くの医療システムは、以前治療を延期した患者を遡及的に識別するためにルールベースの技術を使用している。
本モデルの目的は,ケアを延期するリスクのある患者を識別し,直接的なアウトリーチやソーシャル・メディエーションを通じて,医療機関がケアの延期を防止することである。
論文 参考訳(メタデータ) (2022-06-09T01:21:13Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
我々は、機械学習モデルを構築するための汎用的で説明可能なフレームワークであるCOVID-Net Biochemを紹介する。
この枠組みを用いて、新型コロナウイルス患者の生存率と、入院中に急性腎不全を発症する可能性を予測する。
論文 参考訳(メタデータ) (2022-04-24T07:38:37Z) - COVID-Net Clinical ICU: Enhanced Prediction of ICU Admission for
COVID-19 Patients via Explainability and Trust Quantification [71.80459780697956]
患者臨床データに基づくICU入院予測のためのニューラルネットワークであるCOVID-Net Clinical ICUを紹介する。
提案されたCOVID-Net Clinical ICUは、1,925人のCOVID-19患者からなるシロ・リバネ病院の臨床データセットを使用して構築された。
定量的説明可能性戦略を用いたシステムレベルの洞察発見を行い,異なる臨床特徴の意思決定効果について検討した。
論文 参考訳(メタデータ) (2021-09-14T14:16:32Z) - Severity and Mortality Prediction Models to Triage Indian COVID-19
Patients [0.0]
インド第2波が緩和する中、新型コロナウイルス(COVID-19)は全国で約2900万人の患者に感染し、350万人以上の死者を出した。
そこで本研究では,インドにおける入院当日最大のコホートのうちの1つから,非侵襲的非侵襲的非侵襲的血液パラメータモニタリングに基づいて,臨床結果,重症度,死亡率を予測する2つの解釈可能な機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-09-02T23:15:04Z) - Approximate Bayesian Computation for an Explicit-Duration Hidden Markov
Model of COVID-19 Hospital Trajectories [55.786207368853084]
新型コロナウイルス(COVID-19)のパンデミックの中、病院の資源をモデル化する問題に取り組んでいます。
幅広い適用性のために、関心のある領域の患者レベルデータが利用できない、一般的なが困難なシナリオに注目します。
本稿では,ACED-HMM(ACED-HMM)と呼ばれる集合数正規化隠れマルコフモデルを提案する。
論文 参考訳(メタデータ) (2021-04-28T15:32:42Z) - Forecasting COVID-19 Counts At A Single Hospital: A Hierarchical
Bayesian Approach [59.318136981032]
一つの病院で1日当たりの入院患者数を予測するという課題について検討する。
データのカウント特性を直接キャプチャする階層型ベイズモデルをいくつか開発する。
マサチューセッツ州の8つの病院とイギリスの10の病院のパブリックデータセットに対する我々のアプローチを実証する。
論文 参考訳(メタデータ) (2021-04-14T11:58:54Z) - Forecasting Emergency Department Capacity Constraints for COVID
Isolation Beds [9.358404775024109]
小児病院の救急部門に新たに設置された新型コロナウイルス関連の容量制限は、時間単位の予測ツールの開発を促した。
当院の定位率の予測には,ポイント予測と分類精度の両面で高い性能が得られた。
私たちは現在、医療従事者の能力向上を目標に、ツールをリアルタイムな設定に移行する作業を行っています。
論文 参考訳(メタデータ) (2020-11-09T19:35:41Z) - Visualization and machine learning for forecasting of COVID-19 in
Senegal [0.0]
本稿では、公開データに基づく予測よりも2週間、40日間、可視化と異なる機械学習技術を提供します。
2020年7月15日、セネガルは空域のドアを再開した。
論文 参考訳(メタデータ) (2020-08-06T15:50:30Z) - From predictions to prescriptions: A data-driven response to COVID-19 [42.57407485467993]
新型コロナウイルスの臨床的特徴を理解するための包括的データ駆動型アプローチを提案する。
私たちは、感染や死亡のリスクを予測するために、パーソナライズされた電卓を構築します。
人工呼吸器の再配置と不足軽減のための最適化モデルを提案する。
論文 参考訳(メタデータ) (2020-06-30T03:34:00Z) - Effectiveness and Compliance to Social Distancing During COVID-19 [72.94965109944707]
われわれは、米国内での新型コロナウイルスの感染拡大に対する在宅勤務注文の影響を評価するために、詳細なモビリティデータを用いている。
一方向性グランガー因果性(一方向性グランガー因果性)は、家庭で毎日過ごす時間の割合の中央値から、2週間の遅れを伴うCOVID-19関連死亡件数の日数までである。
論文 参考訳(メタデータ) (2020-06-23T03:36:19Z) - Remote health monitoring and diagnosis in the time of COVID-19 [51.01158603315544]
コロナウイルス(COVID-19)は重症急性呼吸器症候群ウイルス(SARS-CoV-2)によって引き起こされる
パンデミックは、遠隔医療サービスを提供するための新しいルートを革新し、拡張し、創り出すインセンティブを駆り立ててきた。
論文 参考訳(メタデータ) (2020-05-18T08:54:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。