論文の概要: Self-supervised reinforcement learning for speaker localisation with the
iCub humanoid robot
- arxiv url: http://arxiv.org/abs/2011.06544v1
- Date: Thu, 12 Nov 2020 18:02:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-26 07:36:07.736449
- Title: Self-supervised reinforcement learning for speaker localisation with the
iCub humanoid robot
- Title(参考訳): iCubヒューマノイドロボットを用いた話者定位のための自己教師付き強化学習
- Authors: Jonas Gonzalez-Billandon, Lukas Grasse, Matthew Tata, Alessandra
Sciutti, Francesco Rea
- Abstract要約: 人の顔を見ることは、ノイズの多い環境での音声のフィルタリングに人間が依存するメカニズムの1つである。
スピーカーに目を向けるロボットを持つことは、挑戦的な環境でのASRのパフォーマンスに恩恵をもたらす可能性がある。
本稿では,人間の初期発達に触発された自己指導型強化学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 58.2026611111328
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the future robots will interact more and more with humans and will have to
communicate naturally and efficiently. Automatic speech recognition systems
(ASR) will play an important role in creating natural interactions and making
robots better companions. Humans excel in speech recognition in noisy
environments and are able to filter out noise. Looking at a person's face is
one of the mechanisms that humans rely on when it comes to filtering speech in
such noisy environments. Having a robot that can look toward a speaker could
benefit ASR performance in challenging environments. To this aims, we propose a
self-supervised reinforcement learning-based framework inspired by the early
development of humans to allow the robot to autonomously create a dataset that
is later used to learn to localize speakers with a deep learning network.
- Abstract(参考訳): 将来的にロボットはますます人間と対話し、自然に効率的にコミュニケーションしなければならない。
自動音声認識システム(asr)は、自然なインタラクションの作成とロボットのコンパニオン向上において重要な役割を果たす。
人間は雑音の多い環境で音声認識に優れ、ノイズを除去できる。
人の顔を見ることは、このような騒がしい環境で音声をフィルタリングする上で、人間が依存するメカニズムの1つです。
スピーカーに目を向けることができるロボットを持つことは、挑戦的な環境でasrのパフォーマンスに役立つだろう。
そこで本研究では,人間の早期発達に触発された自己教師型強化学習ベースのフレームワークを提案し,ロボットが後にディープラーニングネットワークで話者をローカライズするために使用されるデータセットを自律的に作成できるようにする。
関連論文リスト
- Towards an LLM-Based Speech Interface for Robot-Assisted Feeding [9.528060348251584]
LLM(Large Language Models)を利用した音声インタフェースにより、個人はロボットに高度なコマンドや微妙な好みを伝えることができる。
本研究では,商用支援ロボットのためのLLMベースの音声インタフェースを実演する。
論文 参考訳(メタデータ) (2024-10-27T22:56:51Z) - SIFToM: Robust Spoken Instruction Following through Theory of Mind [51.326266354164716]
本稿では,認知にインスパイアされた音声指導モデルであるSIFToMを提案し,多様な音声条件下でロボットが人間の指示を実践的に追従できるようにする。
結果から,SIFToMモデルは現状の音声モデルや言語モデルよりも優れており,課題に追従する音声命令に対する人間レベルの精度に近づいていることがわかった。
論文 参考訳(メタデータ) (2024-09-17T02:36:10Z) - Imitation of human motion achieves natural head movements for humanoid robots in an active-speaker detection task [2.8220015774219567]
頭の動きは社会的人間と人間の相互作用に不可欠である。
そこで本研究では,直型ヒューマノイドロボットの頭部運動生成に生成型AIパイプラインを用いた。
その結果,会話中の話者を積極的に追跡しながら,人間の頭部の動きを自然に模倣することに成功した。
論文 参考訳(メタデータ) (2024-07-16T17:08:40Z) - Exploring Large Language Models to Facilitate Variable Autonomy for Human-Robot Teaming [4.779196219827508]
本稿では,VR(Unity Virtual Reality)設定に基づく,GPTを利用したマルチロボットテストベッド環境のための新しいフレームワークを提案する。
このシステムにより、ユーザーは自然言語でロボットエージェントと対話でき、それぞれが個々のGPTコアで動く。
12人の参加者によるユーザスタディでは、GPT-4の有効性と、さらに重要なのは、マルチロボット環境で自然言語で会話する機会を与えられる際のユーザ戦略について検討している。
論文 参考訳(メタデータ) (2023-12-12T12:26:48Z) - Real-time Addressee Estimation: Deployment of a Deep-Learning Model on
the iCub Robot [52.277579221741746]
住所推定は、社会ロボットが人間とスムーズに対話するために必要なスキルである。
人間の知覚スキルにインスパイアされたディープラーニングモデルは、iCubロボットに設計、訓練、デプロイされる。
本研究では,人間-ロボットのリアルタイムインタラクションにおいて,そのような実装の手順とモデルの性能について述べる。
論文 参考訳(メタデータ) (2023-11-09T13:01:21Z) - A Sign Language Recognition System with Pepper, Lightweight-Transformer,
and LLM [0.9775599530257609]
本研究は,ヒューマノイドロボットPepperがAmerican Sign Language(ASL)を理解するために,軽量なディープニューラルネットワークアーキテクチャを用いた検討である。
組込みシステムに最適化されたASL理解のための軽量で効率的なモデルを導入し,計算資源を保存しながら,迅速な手話認識を実現する。
我々は、Pepper Robotが自然なCo-Speech Gesture応答を生成できるように対話を調整し、より有機的で直感的なヒューマノイドロボット対話の基礎を築いた。
論文 参考訳(メタデータ) (2023-09-28T23:54:41Z) - Speech-Gesture GAN: Gesture Generation for Robots and Embodied Agents [5.244401764969407]
仮想エージェントや社会ロボットという形で、身体エージェントが急速に普及している。
音声テキストと音声の発話から関節角度の連続を生成できる新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-17T18:46:25Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
我々は、社会的に邪魔にならないナビゲーションのための政策の訓練方法を開発した。
この反事実的摂動を最小化することにより、共有空間における人間の自然な振る舞いを変えない方法でロボットに行動を促すことができる。
屋内移動ロボットが人間の傍観者と対話する大規模なデータセットを収集する。
論文 参考訳(メタデータ) (2023-06-02T19:07:52Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。