Protocols and Trade-Offs of Quantum State Purification
- URL: http://arxiv.org/abs/2404.01138v3
- Date: Thu, 26 Sep 2024 16:33:21 GMT
- Title: Protocols and Trade-Offs of Quantum State Purification
- Authors: Hongshun Yao, Yu-Ao Chen, Erdong Huang, Kaichu Chen, Honghao Fu, Xin Wang,
- Abstract summary: We introduce a general state purification framework designed to achieve the highest fidelity with a specified probability.
For i.i.d. quantum states under depolarizing noise, our framework can replicate the purification protocol proposed by Barenco and al.
We prove the protocols' optimality for two copies of noisy states with any dimension and confirm its optimality for higher numbers of copies and dimensions.
- Score: 4.732131350249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum state purification is crucial in quantum communication and computation, aiming to recover a purified state from multiple copies of an unknown noisy state. This work introduces a general state purification framework designed to achieve the highest fidelity with a specified probability and characterize the associated trade-offs. For i.i.d. quantum states under depolarizing noise, our framework can replicate the purification protocol proposed by [Barenco et al., SIAM Journal on Computing, 26(5), 1997] and further provide exact formulas for the purification fidelity and probability with explicit trade-offs. We prove the protocols' optimality for two copies of noisy states with any dimension and confirm its optimality for higher numbers of copies and dimensions through numerical analysis. Our methodological approach paves the way for proving the protocol's optimality in more general scenarios and leads to optimal protocols for other noise models. Furthermore, we present a systematic implementation method via block encoding and parameterized quantum circuits, providing explicit circuits for purifying three-copy and four-copy states under depolarizing noise. Finally, we estimate the sample complexity and generalize the protocol to a recursive form, demonstrating its practicality for quantum computers with limited memory.
Related papers
- Optimal Quantum Purity Amplification [2.05170973574812]
Quantum purity amplification (QPA) offers a novel approach to counteract the pervasive noise that degrades quantum states.
We present the optimal QPA protocol for general quantum systems against global depolarizing noise.
Our findings suggest that QPA could improve the performance of quantum information processing tasks.
arXiv Detail & Related papers (2024-09-26T17:46:00Z) - Performance of entanglement purification including maximally entangled mixed states [0.0]
Entanglement between distant quantum systems is a critical resource for implementing quantum communication.
We propose an entanglement purification protocol based on two entangling two-qubit operations.
Two variants of the core protocol are introduced and shown to be more practical in certain scenarios.
arXiv Detail & Related papers (2024-02-06T18:34:34Z) - Quantum Repeater for W states [0.0]
We introduce a quantum repeater protocol to efficiently distribute three-qubit W states over arbitrary distances.
We show that the protocol allows one to deal with errors resulting from imperfect channels or state preparation, and noisy operations.
arXiv Detail & Related papers (2023-04-13T18:01:22Z) - Entanglement Purification of Hypergraph States [0.0]
Entanglement purification describes a primitive in quantum information processing, where several copies of noisy quantum states are distilled into few copies of nearly-pure states of high quality.
We present optimized protocols for the purification of hypergraph states, which form a family of multi-qubit states that are relevant from several perspectives.
arXiv Detail & Related papers (2023-01-26T19:00:01Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
bosonic codes map qubit-type quantum information onto the larger bosonic Hilbert space.
We convert between two instances of these codes GKP qunaught states and four-foldsymmetric binomial states corresponding to a zero-logical encoded qubit.
We obtain GKP qunaught states with a fidelity of over 98% and a probability of approximately 3.14%.
arXiv Detail & Related papers (2023-01-24T14:17:07Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Optimal two-qubit gates in recurrence protocols of entanglement purification [0.0]
The proposed method is based on a numerical search in the whole set of SU(4) matrices with the aid of a quasi-Newton algorithm.
We show for certain families of states that optimal protocols are not necessarily achieved by bilaterally applied controlled-NOT gates.
arXiv Detail & Related papers (2022-05-24T14:13:56Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.