Entanglement Purification of Hypergraph States
- URL: http://arxiv.org/abs/2301.11341v2
- Date: Thu, 1 Feb 2024 14:42:48 GMT
- Title: Entanglement Purification of Hypergraph States
- Authors: Lina Vandr\'e and Otfried G\"uhne
- Abstract summary: Entanglement purification describes a primitive in quantum information processing, where several copies of noisy quantum states are distilled into few copies of nearly-pure states of high quality.
We present optimized protocols for the purification of hypergraph states, which form a family of multi-qubit states that are relevant from several perspectives.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entanglement purification describes a primitive in quantum information
processing, where several copies of noisy quantum states are distilled into few
copies of nearly-pure states of high quality via local operations and classical
communication. Especially in the multiparticle case, the task of entanglement
purification is complicated, as many inequivalent forms of pure state
entanglement exist and purification protocols need to be tailored for different
target states. In this paper we present optimized protocols for the
purification of hypergraph states, which form a family of multi-qubit states
that are relevant from several perspectives. We start by reformulating an
existing purification protocol in a graphical language. This allows for
systematical optimization and we present improvements in three directions.
First, one can optimize the sequences of the protocol with respect to the
ordering of the parties. Second, one can use adaptive schemes, where the
measurement results obtained within the protocol are used to modify the
protocols. Finally, one can improve the protocol with respect to the
efficiency, requiring fewer copies of noisy states to reach a certain target
state.
Related papers
- Protocols and Trade-Offs of Quantum State Purification [4.732131350249]
We introduce a general state purification framework designed to achieve the highest fidelity with a specified probability.
For i.i.d. quantum states under depolarizing noise, our framework can replicate the purification protocol proposed by Barenco and al.
We prove the protocols' optimality for two copies of noisy states with any dimension and confirm its optimality for higher numbers of copies and dimensions.
arXiv Detail & Related papers (2024-04-01T14:34:45Z) - Statistical evaluation and optimization of entanglement purification protocols [0.0]
We demonstrate that pioneering protocols are unable to improve the estimated initial average concurrence of almost uniformly sampled density matrices.
We also develop a more efficient protocol and investigate it numerically together with a recent proposal based on an entangling rank-$2$ projector.
arXiv Detail & Related papers (2024-02-19T16:58:03Z) - Performance of entanglement purification including maximally entangled mixed states [0.0]
Entanglement between distant quantum systems is a critical resource for implementing quantum communication.
We propose an entanglement purification protocol based on two entangling two-qubit operations.
Two variants of the core protocol are introduced and shown to be more practical in certain scenarios.
arXiv Detail & Related papers (2024-02-06T18:34:34Z) - Quantum Repeater for W states [0.0]
We introduce a quantum repeater protocol to efficiently distribute three-qubit W states over arbitrary distances.
We show that the protocol allows one to deal with errors resulting from imperfect channels or state preparation, and noisy operations.
arXiv Detail & Related papers (2023-04-13T18:01:22Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Reinforcement learning-enhanced protocols for coherent
population-transfer in three-level quantum systems [50.591267188664666]
We deploy a combination of reinforcement learning-based approaches and more traditional optimization techniques to identify optimal protocols for population transfer.
Our approach is able to explore the space of possible control protocols to reveal the existence of efficient protocols.
The new protocols that we identify are robust against both energy losses and dephasing.
arXiv Detail & Related papers (2021-09-02T14:17:30Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Heterogeneous Multipartite Entanglement Purification for
Size-Constrained Quantum Devices [68.8204255655161]
Purifying entanglement resources after their imperfect generation is an indispensable step towards using them in quantum architectures.
Here we depart from the typical purification paradigm for multipartite states explored in the last twenty years.
We find that smaller sacrificial' states, like Bell pairs, can be more useful in the purification of multipartite states than additional copies of these same states.
arXiv Detail & Related papers (2020-11-23T19:00:00Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.