論文の概要: Solving Physics Puzzles by Reasoning about Paths
- arxiv url: http://arxiv.org/abs/2011.07357v1
- Date: Sat, 14 Nov 2020 18:21:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 13:29:04.815504
- Title: Solving Physics Puzzles by Reasoning about Paths
- Title(参考訳): 経路の推論による物理パズルの解法
- Authors: Augustin Harter, Andrew Melnik, Gaurav Kumar, Dhruv Agarwal, Animesh
Garg, Helge Ritter
- Abstract要約: そこで本研究では,目的達成のために現場での直感的な物理的推論と介入を必要とする,ゴール駆動型タスクのための新しいディープラーニングモデルを提案する。
そのモジュラー構造は、人間がそのようなタスクを解く際に適用される直感的なステップの列を仮説化することによって動機づけられる。
PHYRE(PhyRE)は、2Dメカニクスパズルにおけるゴール駆動の物理的推論のためのベンチマークテストである。
- 参考スコア(独自算出の注目度): 19.899797956793776
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new deep learning model for goal-driven tasks that require
intuitive physical reasoning and intervention in the scene to achieve a desired
end goal. Its modular structure is motivated by hypothesizing a sequence of
intuitive steps that humans apply when trying to solve such a task. The model
first predicts the path the target object would follow without intervention and
the path the target object should follow in order to solve the task. Next, it
predicts the desired path of the action object and generates the placement of
the action object. All components of the model are trained jointly in a
supervised way; each component receives its own learning signal but learning
signals are also backpropagated through the entire architecture. To evaluate
the model we use PHYRE - a benchmark test for goal-driven physical reasoning in
2D mechanics puzzles.
- Abstract(参考訳): 目標達成のために直感的な理屈とシーンへの介入を必要とする目標駆動タスクのための新しいディープラーニングモデルを提案する。
そのモジュラー構造は、人間がそのようなタスクを解く際に適用される直感的なステップの列を仮定することで動機づけられる。
モデルはまず、対象オブジェクトが介入なしで従うであろうパスと、そのタスクを解決するために対象オブジェクトが従うべきパスを予測します。
次に、アクションオブジェクトの所望のパスを予測し、アクションオブジェクトの配置を生成する。
各コンポーネントは独自の学習信号を受け取るが、学習信号もアーキテクチャ全体を通してバックプロパゲーションされる。
モデルを評価するには,2次元メカニカルパズルにおける目標駆動物理推論のためのベンチマークテストであるphyreを使用する。
関連論文リスト
- ShapeGrasp: Zero-Shot Task-Oriented Grasping with Large Language Models through Geometric Decomposition [8.654140442734354]
不慣れな物体のタスク指向の把握は、動的家庭環境におけるロボットにとって必要なスキルである。
本稿では,対象物体の幾何学的分解を簡単な凸形状に生かしたゼロショットタスク指向の把握手法を提案する。
このアプローチでは、ゼロショットタスク指向の把握を容易にするために、最小限の必須情報(オブジェクト名と意図したタスク)を使用します。
論文 参考訳(メタデータ) (2024-03-26T19:26:53Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-26T21:28:23Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
離散化ボトルネックを適用することにより,目標条件付きRLセットアップの性能が向上することを示す。
分布外目標に対する期待した回帰を実験的に証明し、同時に表現的な構造で目標を指定できるようにします。
論文 参考訳(メタデータ) (2022-11-01T03:31:43Z) - TarGF: Learning Target Gradient Field for Object Rearrangement [8.49306925839127]
我々は、オブジェクト配置のより実用的な設定、すなわち、シャッフルされたレイアウトから規範的なターゲット分布へオブジェクトを並べ替えることに焦点を当てる。
報酬工学の目標分布(目標仕様)を記述したり、専門家の軌跡を実証として収集することは困難である。
我々は、目標勾配場(TarGF)の学習にスコアマッチングの目的を用い、目標分布の可能性を高めるために各対象の方向を示す。
論文 参考訳(メタデータ) (2022-09-02T07:20:34Z) - Silver-Bullet-3D at ManiSkill 2021: Learning-from-Demonstrations and
Heuristic Rule-based Methods for Object Manipulation [118.27432851053335]
本稿では,SAPIEN ManiSkill Challenge 2021: No Interaction Trackにおいて,以下の2つのトラックを対象としたシステムの概要と比較分析を行った。
No Interactionは、事前に収集された実証軌道からの学習ポリシーのターゲットを追跡する。
このトラックでは,タスクを一連のサブタスクに分解することで,高品質なオブジェクト操作をトリガするHuristic Rule-based Method (HRM) を設計する。
各サブタスクに対して、ロボットアームに適用可能なアクションを予測するために、単純なルールベースの制御戦略が採用されている。
論文 参考訳(メタデータ) (2022-06-13T16:20:42Z) - Suspected Object Matters: Rethinking Model's Prediction for One-stage
Visual Grounding [93.82542533426766]
疑似オブジェクト間の対象オブジェクト選択を促進するため,疑似オブジェクト変換機構(SOT)を提案する。
SOTは既存のCNNとTransformerベースのワンステージ視覚グラウンドにシームレスに統合できる。
実験の結果,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-03-10T06:41:07Z) - Landmark Policy Optimization for Object Navigation Task [77.34726150561087]
本研究は,未確認環境において,与えられたセマンティックカテゴリに関連する最も近いオブジェクトにナビゲートするオブジェクトゴールナビゲーションタスクについて研究する。
最近の研究は、エンドツーエンドの強化学習アプローチとモジュールシステムの両方において大きな成果を上げていますが、堅牢で最適なものにするには大きな前進が必要です。
本稿では,これらのランドマークを抽出する手法として,標準的なタスクの定式化とランドマークとしての付加的な地域知識を取り入れた階層的手法を提案する。
論文 参考訳(メタデータ) (2021-09-17T12:28:46Z) - Aligning Pretraining for Detection via Object-Level Contrastive Learning [57.845286545603415]
画像レベルのコントラスト表現学習は、伝達学習の汎用モデルとして非常に有効であることが証明されている。
我々は、これは準最適である可能性があり、従って、自己教師付きプレテキストタスクと下流タスクのアライメントを促進する設計原則を提唱する。
Selective Object Contrastive Learning (SoCo) と呼ばれる本手法は,COCO検出における伝達性能の最先端化を実現する。
論文 参考訳(メタデータ) (2021-06-04T17:59:52Z) - Follow the Object: Curriculum Learning for Manipulation Tasks with
Imagined Goals [8.98526174345299]
本稿では,想像対象目標の概念を紹介する。
特定の操作タスクに対して、興味のある対象は、まず自分自身で所望の目標位置に到達するように訓練される。
オブジェクトポリシーは、可塑性オブジェクト軌跡の予測モデルを構築するために利用されます。
提案するアルゴリズムであるFollow the Objectは、7つのMuJoCo環境で評価されている。
論文 参考訳(メタデータ) (2020-08-05T12:19:14Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
本研究は,未確認環境における対象カテゴリーのインスタンスにナビゲートするオブジェクトゴールナビゲーションの問題を研究する。
本稿では,表層的なセマンティックマップを構築し,効率的に環境を探索する「ゴール指向セマンティック探索」というモジュールシステムを提案する。
論文 参考訳(メタデータ) (2020-07-01T17:52:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。