論文の概要: ShapeGrasp: Zero-Shot Task-Oriented Grasping with Large Language Models through Geometric Decomposition
- arxiv url: http://arxiv.org/abs/2403.18062v1
- Date: Tue, 26 Mar 2024 19:26:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 21:05:06.662639
- Title: ShapeGrasp: Zero-Shot Task-Oriented Grasping with Large Language Models through Geometric Decomposition
- Title(参考訳): ShapeGrasp: 幾何分解による大規模言語モデルによるゼロショットタスク指向グラフ作成
- Authors: Samuel Li, Sarthak Bhagat, Joseph Campbell, Yaqi Xie, Woojun Kim, Katia Sycara, Simon Stepputtis,
- Abstract要約: 不慣れな物体のタスク指向の把握は、動的家庭環境におけるロボットにとって必要なスキルである。
本稿では,対象物体の幾何学的分解を簡単な凸形状に生かしたゼロショットタスク指向の把握手法を提案する。
このアプローチでは、ゼロショットタスク指向の把握を容易にするために、最小限の必須情報(オブジェクト名と意図したタスク)を使用します。
- 参考スコア(独自算出の注目度): 8.654140442734354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-oriented grasping of unfamiliar objects is a necessary skill for robots in dynamic in-home environments. Inspired by the human capability to grasp such objects through intuition about their shape and structure, we present a novel zero-shot task-oriented grasping method leveraging a geometric decomposition of the target object into simple, convex shapes that we represent in a graph structure, including geometric attributes and spatial relationships. Our approach employs minimal essential information - the object's name and the intended task - to facilitate zero-shot task-oriented grasping. We utilize the commonsense reasoning capabilities of large language models to dynamically assign semantic meaning to each decomposed part and subsequently reason over the utility of each part for the intended task. Through extensive experiments on a real-world robotics platform, we demonstrate that our grasping approach's decomposition and reasoning pipeline is capable of selecting the correct part in 92% of the cases and successfully grasping the object in 82% of the tasks we evaluate. Additional videos, experiments, code, and data are available on our project website: https://shapegrasp.github.io/.
- Abstract(参考訳): 不慣れな物体のタスク指向の把握は、動的家庭環境におけるロボットにとって必要なスキルである。
対象物体の形状や構造を直感的に把握する能力に触発されて,対象物体の幾何学的分解を,幾何学的属性や空間的関係を含むグラフ構造で表現する単純な凸形状に活用する,新しいゼロショットタスク指向の把握手法を提案する。
このアプローチでは、ゼロショットタスク指向の把握を容易にするために、最小限の必須情報(オブジェクト名と意図したタスク)を使用します。
我々は,大言語モデルの常識推論機能を利用して,分割された各部分に意味的意味を動的に割り当て,次に意図したタスクに対して各部分の有用性を推論する。
実世界のロボットプラットフォーム上での広範な実験を通して、我々の把握アプローチの分解と推論パイプラインは、ケースの92%で正しい部分を選択し、評価したタスクの82%でオブジェクトを把握できることを実証した。
追加のビデオ、実験、コード、データは、プロジェクトのWebサイト(https://shapegrasp.github.io/)で公開されています。
関連論文リスト
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
ゼロショット一般化のレンズによる現在の対象中心法について検討する。
8つの異なる合成および実世界のデータセットからなるベンチマークを導入する。
多様な実世界の画像のトレーニングにより、見えないシナリオへの転送性が向上することがわかった。
論文 参考訳(メタデータ) (2024-08-17T10:37:07Z) - ICGNet: A Unified Approach for Instance-Centric Grasping [42.92991092305974]
オブジェクト中心の把握のためのエンドツーエンドアーキテクチャを導入する。
提案手法の有効性を,合成データセット上での最先端手法に対して広範囲に評価することにより示す。
論文 参考訳(メタデータ) (2024-01-18T12:41:41Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-26T21:28:23Z) - Graphical Object-Centric Actor-Critic [55.2480439325792]
本稿では,アクター批判とモデルに基づくアプローチを組み合わせたオブジェクト中心強化学習アルゴリズムを提案する。
変換器エンコーダを用いてオブジェクト表現とグラフニューラルネットワークを抽出し、環境のダイナミクスを近似する。
本アルゴリズムは,現状のモデルフリーアクター批判アルゴリズムよりも複雑な3次元ロボット環境と構成構造をもつ2次元環境において,より優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-10-26T06:05:12Z) - Localizing Active Objects from Egocentric Vision with Symbolic World
Knowledge [62.981429762309226]
タスクの指示をエゴセントリックな視点から積極的に下す能力は、AIエージェントがタスクを達成したり、人間をバーチャルに支援する上で不可欠である。
本稿では,現在進行中のオブジェクトの役割を学習し,指示から正確に抽出することで,アクティブなオブジェクトをローカライズするフレーズグラウンドモデルの性能を向上させることを提案する。
Ego4DおよびEpic-Kitchensデータセットに関するフレームワークの評価を行った。
論文 参考訳(メタデータ) (2023-10-23T16:14:05Z) - Efficient Representations of Object Geometry for Reinforcement Learning
of Interactive Grasping Policies [29.998917158604694]
本稿では,様々な幾何学的に異なる実世界の物体の対話的把握を学習する強化学習フレームワークを提案する。
学習したインタラクティブなポリシーのビデオはhttps://maltemosbach.org/io/geometry_aware_grasping_policiesで公開されている。
論文 参考訳(メタデータ) (2022-11-20T11:47:33Z) - Discovering Objects that Can Move [55.743225595012966]
手動ラベルなしでオブジェクトを背景から分離する、オブジェクト発見の問題について検討する。
既存のアプローチでは、色、テクスチャ、位置などの外観の手がかりを使用して、ピクセルをオブジェクトのような領域に分類する。
私たちは、動的オブジェクト -- 世界で独立して動くエンティティ -- にフォーカスすることを選びます。
論文 参考訳(メタデータ) (2022-03-18T21:13:56Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Predicting Stable Configurations for Semantic Placement of Novel Objects [37.18437299513799]
我々のゴールは、新しい環境における学習された意味的関係に従って、ロボットが未確認の物体を配置できるようにすることである。
我々は、未知のオブジェクトのセマンティック配置のための計画アルゴリズムと密に統合するために、モデルとトレーニングをゼロから構築する。
提案手法は,RGB-Dセンシングのみによる形状の異なるシーンにおける未知物体のセマンティック・アレンジメントのための動作計画を可能にする。
論文 参考訳(メタデータ) (2021-08-26T23:05:05Z) - O2O-Afford: Annotation-Free Large-Scale Object-Object Affordance
Learning [24.9242853417825]
本稿では,様々なタスクに対するオブジェクト・オブジェクトのインタラクションを学習するための,統一的なアベイランス学習フレームワークを提案する。
我々は、人間のアノテーションやデモンストレーションを必要とせずに、大規模なオブジェクト・オブジェクト・アベイランス・ラーニングを行うことができる。
大規模合成データと実世界のデータを用いた実験により,提案手法の有効性が証明された。
論文 参考訳(メタデータ) (2021-06-29T04:38:12Z) - Where2Act: From Pixels to Actions for Articulated 3D Objects [54.19638599501286]
可動部を有する関節物体の押出しや引抜き等の基本動作に関連する高度に局所化された動作可能な情報を抽出する。
シミュレーションでネットワークをトレーニングできるオンラインデータサンプリング戦略を備えた学習から対話までのフレームワークを提案します。
私たちの学習モデルは、現実世界のデータにも転送します。
論文 参考訳(メタデータ) (2021-01-07T18:56:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。