Manual-Label Free 3D Detection via An Open-Source Simulator
- URL: http://arxiv.org/abs/2011.07784v1
- Date: Mon, 16 Nov 2020 08:29:01 GMT
- Title: Manual-Label Free 3D Detection via An Open-Source Simulator
- Authors: Zhen Yang and Chi Zhang and Huiming Guo and Zhaoxiang Zhang
- Abstract summary: We propose a manual-label free 3D detection algorithm that leverages the CARLA simulator to generate a large amount of self-labeled training samples.
Domain Adaptive VoxelNet (DA-VoxelNet) can cross the distribution gap from the synthetic data to the real scenario.
Experimental results show that the proposed unsupervised DA 3D detector can achieve 76.66% and 56.64% mAP on KITTI evaluation set.
- Score: 50.74299948748722
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR based 3D object detectors typically need a large amount of
detailed-labeled point cloud data for training, but these detailed labels are
commonly expensive to acquire. In this paper, we propose a manual-label free 3D
detection algorithm that leverages the CARLA simulator to generate a large
amount of self-labeled training samples and introduces a novel Domain Adaptive
VoxelNet (DA-VoxelNet) that can cross the distribution gap from the synthetic
data to the real scenario. The self-labeled training samples are generated by a
set of high quality 3D models embedded in a CARLA simulator and a proposed
LiDAR-guided sampling algorithm. Then a DA-VoxelNet that integrates both a
sample-level DA module and an anchor-level DA module is proposed to enable the
detector trained by the synthetic data to adapt to real scenario. Experimental
results show that the proposed unsupervised DA 3D detector on KITTI evaluation
set can achieve 76.66% and 56.64% mAP on BEV mode and 3D mode respectively. The
results reveal a promising perspective of training a LIDAR-based 3D detector
without any hand-tagged label.
Related papers
- STONE: A Submodular Optimization Framework for Active 3D Object Detection [20.54906045954377]
Key requirement for training an accurate 3D object detector is the availability of a large amount of LiDAR-based point cloud data.
This paper proposes a unified active 3D object detection framework, for greatly reducing the labeling cost of training 3D object detectors.
arXiv Detail & Related papers (2024-10-04T20:45:33Z) - Approaching Outside: Scaling Unsupervised 3D Object Detection from 2D Scene [22.297964850282177]
We propose LiDAR-2D Self-paced Learning (LiSe) for unsupervised 3D detection.
RGB images serve as a valuable complement to LiDAR data, offering precise 2D localization cues.
Our framework devises a self-paced learning pipeline that incorporates adaptive sampling and weak model aggregation strategies.
arXiv Detail & Related papers (2024-07-11T14:58:49Z) - MDT3D: Multi-Dataset Training for LiDAR 3D Object Detection
Generalization [3.8243923744440926]
3D object detection models trained on a source dataset with a specific point distribution have shown difficulties in generalizing to unseen datasets.
We leverage the information available from several annotated source datasets with our Multi-Dataset Training for 3D Object Detection (MDT3D) method.
We show how we managed the mix of datasets during training and finally introduce a new cross-dataset augmentation method: cross-dataset object injection.
arXiv Detail & Related papers (2023-08-02T08:20:00Z) - An Empirical Study of Pseudo-Labeling for Image-based 3D Object
Detection [72.30883544352918]
We investigate whether pseudo-labels can provide effective supervision for the baseline models under varying settings.
We achieve 20.23 AP for moderate level on the KITTI-3D testing set without bells and whistles, improving the baseline model by 6.03 AP.
We hope this work can provide insights for the image-based 3D detection community under a semi-supervised setting.
arXiv Detail & Related papers (2022-08-15T12:17:46Z) - GLENet: Boosting 3D Object Detectors with Generative Label Uncertainty Estimation [70.75100533512021]
In this paper, we formulate the label uncertainty problem as the diversity of potentially plausible bounding boxes of objects.
We propose GLENet, a generative framework adapted from conditional variational autoencoders, to model the one-to-many relationship between a typical 3D object and its potential ground-truth bounding boxes with latent variables.
The label uncertainty generated by GLENet is a plug-and-play module and can be conveniently integrated into existing deep 3D detectors.
arXiv Detail & Related papers (2022-07-06T06:26:17Z) - Boosting 3D Object Detection by Simulating Multimodality on Point Clouds [51.87740119160152]
This paper presents a new approach to boost a single-modality (LiDAR) 3D object detector by teaching it to simulate features and responses that follow a multi-modality (LiDAR-image) detector.
The approach needs LiDAR-image data only when training the single-modality detector, and once well-trained, it only needs LiDAR data at inference.
Experimental results on the nuScenes dataset show that our approach outperforms all SOTA LiDAR-only 3D detectors.
arXiv Detail & Related papers (2022-06-30T01:44:30Z) - ST3D++: Denoised Self-training for Unsupervised Domain Adaptation on 3D
Object Detection [78.71826145162092]
We present a self-training method, named ST3D++, with a holistic pseudo label denoising pipeline for unsupervised domain adaptation on 3D object detection.
We equip the pseudo label generation process with a hybrid quality-aware triplet memory to improve the quality and stability of generated pseudo labels.
In the model training stage, we propose a source data assisted training strategy and a curriculum data augmentation policy.
arXiv Detail & Related papers (2021-08-15T07:49:06Z) - ST3D: Self-training for Unsupervised Domain Adaptation on 3D
ObjectDetection [78.71826145162092]
We present a new domain adaptive self-training pipeline, named ST3D, for unsupervised domain adaptation on 3D object detection from point clouds.
Our ST3D achieves state-of-the-art performance on all evaluated datasets and even surpasses fully supervised results on KITTI 3D object detection benchmark.
arXiv Detail & Related papers (2021-03-09T10:51:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.