Artificial Intelligence of Things: A Survey
- URL: http://arxiv.org/abs/2410.19998v1
- Date: Fri, 25 Oct 2024 22:45:58 GMT
- Title: Artificial Intelligence of Things: A Survey
- Authors: Shakhrul Iman Siam, Hyunho Ahn, Li Liu, Samiul Alam, Hui Shen, Zhichao Cao, Ness Shroff, Bhaskar Krishnamachari, Mani Srivastava, Mi Zhang,
- Abstract summary: The integration of the Internet of Things (IoT) and modern Artificial Intelligence (AI) has given rise to a new paradigm known as the Artificial Intelligence of Things (AIoT)
We examine AIoT literature related to sensing, computing, and networking & communication, which form the three key components of AIoT.
In addition to advancements in these areas, we review domain-specific AIoT systems that are designed for various important application domains.
- Score: 14.204632921719933
- License:
- Abstract: The integration of the Internet of Things (IoT) and modern Artificial Intelligence (AI) has given rise to a new paradigm known as the Artificial Intelligence of Things (AIoT). In this survey, we provide a systematic and comprehensive review of AIoT research. We examine AIoT literature related to sensing, computing, and networking & communication, which form the three key components of AIoT. In addition to advancements in these areas, we review domain-specific AIoT systems that are designed for various important application domains. We have also created an accompanying GitHub repository, where we compile the papers included in this survey: https://github.com/AIoT-MLSys-Lab/AIoT-Survey. This repository will be actively maintained and updated with new research as it becomes available. As both IoT and AI become increasingly critical to our society, we believe AIoT is emerging as an essential research field at the intersection of IoT and modern AI. We hope this survey will serve as a valuable resource for those engaged in AIoT research and act as a catalyst for future explorations to bridge gaps and drive advancements in this exciting field.
Related papers
- Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
Video Anomaly Detection (VAD) is a fundamental research task within the Artificial Intelligence (AI) community.
In this article, we delineate the foundational assumptions, learning frameworks, and applicable scenarios of various deep learning-driven VAD routes.
We showcase our latest NSVAD research in industrial IoT and smart cities, along with an end-cloud collaborative architecture for deployable NSVAD.
arXiv Detail & Related papers (2024-05-16T02:00:44Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - Selected Trends in Artificial Intelligence for Space Applications [69.3474006357492]
This chapter focuses on differentiable intelligence and on-board machine learning.
We discuss a few selected projects originating from the European Space Agency's (ESA) Advanced Concepts Team (ACT)
arXiv Detail & Related papers (2022-12-10T07:49:50Z) - Software Engineering for AI-Based Systems: A Survey [8.550158373713906]
There is limited synthesized knowledge on Software Engineering approaches for building, operating, and maintaining AI-based systems.
SE for AI-based systems is an emerging research area, where more than 2/3 of the studies have been published since 2018.
The most studied properties of AI-based systems are dependability and safety.
arXiv Detail & Related papers (2021-05-05T11:22:08Z) - A Survey of Embodied AI: From Simulators to Research Tasks [13.923234397344487]
An emerging paradigm shift from the era of "internet AI" to "embodied AI"
This paper comprehensively surveys state-of-the-art embodied AI simulators and research.
arXiv Detail & Related papers (2021-03-08T17:31:19Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Sensor Artificial Intelligence and its Application to Space Systems -- A
White Paper [35.78525324168878]
The goal of this white paper is to establish "Sensor AI" as a dedicated research topic.
A closer look at the sensors and their physical properties within AI approaches will lead to more robust and widely applicable algorithms.
Sensor AI will play a decisive role in autonomous driving as well as in areas of automated production, predictive maintenance or space research.
arXiv Detail & Related papers (2020-06-09T14:10:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.