論文の概要: A Simple Framework to Quantify Different Types of Uncertainty in Deep
Neural Networks for Image Classification
- arxiv url: http://arxiv.org/abs/2011.08712v5
- Date: Fri, 28 May 2021 15:33:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 15:37:40.531894
- Title: A Simple Framework to Quantify Different Types of Uncertainty in Deep
Neural Networks for Image Classification
- Title(参考訳): 画像分類のための深部ニューラルネットワークにおける異種不確かさの簡易定量化フレームワーク
- Authors: Aria Khoshsirat
- Abstract要約: モデルの予測の不確実性を定量化することは、AIシステムの安全性を高めるために重要である。
これは、自動運転車の制御、医療画像分析、財務推定、法的分野など、エラーのコストが高いアプリケーションにとって極めて重要である。
本稿では,画像分類の課題に対して,Deep Neural Networksにおいて既知の3種類の不確実性を捕捉し,定量化するための完全なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying uncertainty in a model's predictions is important as it enables
the safety of an AI system to be increased by acting on the model's output in
an informed manner. This is crucial for applications where the cost of an error
is high, such as in autonomous vehicle control, medical image analysis,
financial estimations or legal fields. Deep Neural Networks are powerful
predictors that have recently achieved state-of-the-art performance on a wide
spectrum of tasks. Quantifying predictive uncertainty in DNNs is a challenging
and yet on-going problem. In this paper we propose a complete framework to
capture and quantify three known types of uncertainty in DNNs for the task of
image classification. This framework includes an ensemble of CNNs for model
uncertainty, a supervised reconstruction auto-encoder to capture distributional
uncertainty and using the output of activation functions in the last layer of
the network, to capture data uncertainty. Finally we demonstrate the efficiency
of our method on popular image datasets for classification.
- Abstract(参考訳): モデルの予測の不確かさの定量化は、AIシステムの安全性を、モデル出力にインフォームドで作用させることによって向上させることが重要である。
これは、自動運転車の制御、医療画像分析、財務的な見積もり、法的分野など、エラーのコストが高いアプリケーションにとって重要である。
ディープニューラルネットワークは、最近幅広いタスクで最先端のパフォーマンスを達成した強力な予測器である。
DNNにおける予測の不確実性の定量化は困難だが、現在進行中の課題である。
本稿では,dnnにおける3つの既知の不確かさを画像分類のタスクで捉え,定量化する完全枠組みを提案する。
このフレームワークは、モデル不確実性のためのCNNのアンサンブル、分散不確実性を捕捉し、ネットワークの最後の層におけるアクティベーション関数の出力を使用してデータ不確実性をキャプチャする教師付き再構成オートエンコーダを含む。
最後に,一般的な画像データセットを用いた分類手法の有効性を示す。
関連論文リスト
- Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm [6.515472477685614]
敵対的攻撃に対するディープニューラルネットワーク(DNN)の感受性は、多くのアプリケーションにまたがる信頼性を損なう。
本稿では,DeepFoolの進化であるET DeepFoolアルゴリズムを紹介する。
我々の実証的研究は、画像の整合性を維持する上で、この洗練されたアプローチが優れていることを示すものである。
論文 参考訳(メタデータ) (2023-10-18T18:50:39Z) - Random-Set Neural Networks (RS-NN) [4.549947259731147]
分類のための新しいランダムセットニューラルネットワーク(RS-NN)を提案する。
RS-NNは、一組のクラス上の確率ベクトルよりも信念関数を予測する。
限られたトレーニングセットによって、機械学習で引き起こされる「緊急」不確実性を符号化する。
論文 参考訳(メタデータ) (2023-07-11T20:00:35Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - An out-of-distribution discriminator based on Bayesian neural network
epistemic uncertainty [0.19573380763700712]
ベイズニューラルネットワーク(Bayesian Neural Network, BNN)は、不確実性を定量化するための組み込み能力を備えた、重要なタイプのニューラルネットワークである。
本稿では,BNNにおける失語症およびてんかんの不確実性とその計算方法について論じる。
論文 参考訳(メタデータ) (2022-10-18T21:15:33Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Unveiling the potential of Graph Neural Networks for robust Intrusion
Detection [2.21481607673149]
本稿では,グラフとして構造化された攻撃の流れパターンを学習するための新しいグラフニューラルネットワーク(GNN)モデルを提案する。
我々のモデルは従来の実験と同等の精度を維持することができる一方、最先端のML技術は敵攻撃下で50%の精度(F1スコア)を低下させる。
論文 参考訳(メタデータ) (2021-07-30T16:56:39Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
自動運転車などの安全クリティカルなシステムには、定量化または少なくとも上限の不確実性が不可欠です。
マハラノビス距離に基づく統計的テストにより、厳しい品質基準である不確実性リアリズムを評価します。
自動車分野に採用し、プレーンエンコーダデコーダモデルと比較して、不確実性リアリズムを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-01-08T11:56:12Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
人間のループシステムにおけるモンテカルロのドロップアウトに基づく不確実性対策により,システムの透明性と性能が向上することを示す。
シミュレーション研究により、不確実性に基づく「ループ内人間システム」は、様々なレベルの人間の関与に対する性能を高めることが示されている。
論文 参考訳(メタデータ) (2020-07-14T15:47:37Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。