論文の概要: Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm
- arxiv url: http://arxiv.org/abs/2310.13019v4
- Date: Fri, 30 Aug 2024 05:50:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-02 20:31:28.585800
- Title: Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm
- Title(参考訳): ディープフールアルゴリズムを用いたターゲットクラス操作のためのディープニューラルネットワーク上の敵攻撃の試行
- Authors: S. M. Fazle Rabby Labib, Joyanta Jyoti Mondal, Meem Arafat Manab, Sarfaraz Newaz, Xi Xiao,
- Abstract要約: 敵対的攻撃に対するディープニューラルネットワーク(DNN)の感受性は、多くのアプリケーションにまたがる信頼性を損なう。
本稿では,DeepFoolの進化であるET DeepFoolアルゴリズムを紹介する。
我々の実証的研究は、画像の整合性を維持する上で、この洗練されたアプローチが優れていることを示すものである。
- 参考スコア(独自算出の注目度): 6.515472477685614
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The susceptibility of deep neural networks (DNNs) to adversarial attacks undermines their reliability across numerous applications, underscoring the necessity for an in-depth exploration of these vulnerabilities and the formulation of robust defense strategies. The DeepFool algorithm by Moosavi-Dezfooli et al. (2016) represents a pivotal step in identifying minimal perturbations required to induce misclassification of input images. Nonetheless, its generic methodology falls short in scenarios necessitating targeted interventions. Additionally, previous research studies have predominantly concentrated on the success rate of attacks without adequately addressing the consequential distortion of images, the maintenance of image quality, or the confidence threshold required for misclassification. To bridge these gaps, we introduce the Enhanced Targeted DeepFool (ET DeepFool) algorithm, an evolution of DeepFool that not only facilitates the specification of desired misclassification targets but also incorporates a configurable minimum confidence score. Our empirical investigations demonstrate the superiority of this refined approach in maintaining the integrity of images and minimizing perturbations across a variety of DNN architectures. Unlike previous iterations, such as the Targeted DeepFool by Gajjar et al. (2022), our method grants unparalleled control over the perturbation process, enabling precise manipulation of model responses. Preliminary outcomes reveal that certain models, including AlexNet and the advanced Vision Transformer, display commendable robustness to such manipulations. This discovery of varying levels of model robustness, as unveiled through our confidence level adjustments, could have far-reaching implications for the field of image recognition. Our code will be made public upon acceptance of the paper.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)の敵対的攻撃に対する感受性は、多くのアプリケーションにわたる信頼性を損なうものであり、これらの脆弱性の詳細な調査と堅牢な防御戦略の策定の必要性を浮き彫りにしている。
Moosavi-Dezfooli et al (2016)によるDeepFoolアルゴリズムは、入力画像の誤分類を引き起こすのに必要な最小の摂動を識別する重要なステップである。
それでも、その一般的な方法論は、ターゲットの介入を必要とするシナリオでは不十分である。
さらに、過去の研究では、画像の連続的な歪み、画質の維持、または誤分類に必要な信頼しきい値に適切に対処することなく、攻撃の成功率に主に集中してきた。
これらのギャップを埋めるために、我々は、DeepFoolの進化であるET DeepFoolアルゴリズムを導入しました。
我々の実証研究は、画像の整合性を維持し、様々なDNNアーキテクチャにおける摂動を最小限に抑えるという、この洗練されたアプローチの優位性を実証している。
Gajjar et al (2022)によるTargeted DeepFoolのような以前のイテレーションとは異なり、我々の手法は摂動過程の非並列制御を可能にし、モデル応答の正確な操作を可能にする。
予備的な結果から、AlexNet や Advanced Vision Transformer など一部のモデルでは、このような操作に満足できるロバストさが示されている。
このモデルロバスト性の様々なレベルの発見は、我々の信頼度調整によって明らかにされたように、画像認識の分野に大きく影響する可能性がある。
私たちのコードは、論文を受理して公表します。
関連論文リスト
- Perturb, Attend, Detect and Localize (PADL): Robust Proactive Image Defense [5.150608040339816]
本稿では,クロスアテンションに基づく符号化と復号の対称スキームを用いて,画像固有の摂動を生成する新しいソリューションであるPADLを紹介する。
提案手法は,StarGANv2,BlendGAN,DiffAE,StableDiffusion,StableDiffusionXLなど,さまざまなアーキテクチャ設計の未確認モデルに一般化する。
論文 参考訳(メタデータ) (2024-09-26T15:16:32Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - LEAT: Towards Robust Deepfake Disruption in Real-World Scenarios via
Latent Ensemble Attack [11.764601181046496]
生成モデルによって作成された悪意のある視覚コンテンツであるディープフェイクは、社会にますます有害な脅威をもたらす。
近年のディープフェイクの損傷を積極的に軽減するために, 逆方向の摂動を用いてディープフェイクモデルの出力を妨害する研究が進められている。
そこで本研究では,Latent Ensemble ATtack (LEAT) と呼ばれる簡易かつ効果的なディスラプション手法を提案する。
論文 参考訳(メタデータ) (2023-07-04T07:00:37Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Meta Adversarial Perturbations [66.43754467275967]
メタ逆境摂動(MAP)の存在を示す。
MAPは1段階の上昇勾配更新によって更新された後、自然画像を高い確率で誤分類する。
これらの摂動は画像に依存しないだけでなく、モデルに依存しないものであり、単一の摂動は見えないデータポイントと異なるニューラルネットワークアーキテクチャにまたがってうまく一般化される。
論文 参考訳(メタデータ) (2021-11-19T16:01:45Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
ディープラーニングの広く普及を制限する大きな課題は、敵の攻撃に対する脆弱さである。
本研究は,ディープニューラルネットワークの対角強靭性を評価するための新しい性能尺度である残留誤差の概念を提示する。
画像分類を用いた実験結果から,提案手法の有効性と有効性を示した。
論文 参考訳(メタデータ) (2021-06-18T16:34:23Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - A Simple Framework to Quantify Different Types of Uncertainty in Deep
Neural Networks for Image Classification [0.0]
モデルの予測の不確実性を定量化することは、AIシステムの安全性を高めるために重要である。
これは、自動運転車の制御、医療画像分析、財務推定、法的分野など、エラーのコストが高いアプリケーションにとって極めて重要である。
本稿では,画像分類の課題に対して,Deep Neural Networksにおいて既知の3種類の不確実性を捕捉し,定量化するための完全なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-11-17T15:36:42Z) - Solving Inverse Problems With Deep Neural Networks -- Robustness
Included? [3.867363075280544]
近年の研究では、複数の画像再構成タスクにおけるディープニューラルネットワークの不安定性が指摘されている。
分類における敵対的攻撃と類似して、入力領域のわずかな歪みが深刻な成果物を生じさせる可能性が示された。
本稿では、未決定の逆問題を解決するためのディープラーニングベースのアルゴリズムの堅牢性について広範な研究を行うことにより、この懸念に新たな光を当てる。
論文 参考訳(メタデータ) (2020-11-09T09:33:07Z) - Efficient detection of adversarial images [2.6249027950824506]
画像の画素値は外部攻撃者によって修正されるため、人間の目にはほとんど見えない。
本稿では,修正画像の検出を容易にする新しい前処理手法を提案する。
このアルゴリズムの適応バージョンでは、ランダムな数の摂動が適応的に選択される。
論文 参考訳(メタデータ) (2020-07-09T05:35:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。