GraphAD: Interaction Scene Graph for End-to-end Autonomous Driving
- URL: http://arxiv.org/abs/2403.19098v2
- Date: Sun, 7 Apr 2024 03:49:39 GMT
- Title: GraphAD: Interaction Scene Graph for End-to-end Autonomous Driving
- Authors: Yunpeng Zhang, Deheng Qian, Ding Li, Yifeng Pan, Yong Chen, Zhenbao Liang, Zhiyao Zhang, Shurui Zhang, Hongxu Li, Maolei Fu, Yun Ye, Zhujin Liang, Yi Shan, Dalong Du,
- Abstract summary: We propose the Interaction Scene Graph (ISG) as a unified method to model the interactions among the ego-vehicle, road agents, and map elements.
We evaluate the proposed method for end-to-end autonomous driving on the nuScenes dataset.
- Score: 16.245949174447574
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling complicated interactions among the ego-vehicle, road agents, and map elements has been a crucial part for safety-critical autonomous driving. Previous works on end-to-end autonomous driving rely on the attention mechanism for handling heterogeneous interactions, which fails to capture the geometric priors and is also computationally intensive. In this paper, we propose the Interaction Scene Graph (ISG) as a unified method to model the interactions among the ego-vehicle, road agents, and map elements. With the representation of the ISG, the driving agents aggregate essential information from the most influential elements, including the road agents with potential collisions and the map elements to follow. Since a mass of unnecessary interactions are omitted, the more efficient scene-graph-based framework is able to focus on indispensable connections and leads to better performance. We evaluate the proposed method for end-to-end autonomous driving on the nuScenes dataset. Compared with strong baselines, our method significantly outperforms in the full-stack driving tasks, including perception, prediction, and planning. Code will be released at https://github.com/zhangyp15/GraphAD.
Related papers
- GITSR: Graph Interaction Transformer-based Scene Representation for Multi Vehicle Collaborative Decision-making [9.910230703889956]
This study focuses on efficient scene representation and the modeling of spatial interaction behaviors of traffic states.
In this study, we propose GITSR, an effective framework for Graph Interaction Transformer-based Scene Representation.
arXiv Detail & Related papers (2024-11-03T15:27:26Z) - ProIn: Learning to Predict Trajectory Based on Progressive Interactions for Autonomous Driving [11.887346755144485]
A progressive interaction network is proposed to enable the agent's feature to progressively focus on relevant maps.
The network progressively encodes the complex influence of map constraints into the agent's feature through graph convolutions.
Experiments have validated the superiority of progressive interactions to the existing one-stage interaction.
arXiv Detail & Related papers (2024-03-25T02:38:34Z) - PPAD: Iterative Interactions of Prediction and Planning for End-to-end Autonomous Driving [57.89801036693292]
PPAD (Iterative Interaction of Prediction and Planning Autonomous Driving) considers the timestep-wise interaction to better integrate prediction and planning.
We design ego-to-agent, ego-to-map, and ego-to-BEV interaction mechanisms with hierarchical dynamic key objects attention to better model the interactions.
arXiv Detail & Related papers (2023-11-14T11:53:24Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
We propose RSG-Net (Road Scene Graph Net): a graph convolutional network designed to predict potential semantic relationships from object proposals.
The experimental results indicate that this network, trained on Road Scene Graph dataset, could efficiently predict potential semantic relationships among objects around the ego-vehicle.
arXiv Detail & Related papers (2022-07-16T12:40:17Z) - Decoder Fusion RNN: Context and Interaction Aware Decoders for
Trajectory Prediction [53.473846742702854]
We propose a recurrent, attention-based approach for motion forecasting.
Decoder Fusion RNN (DF-RNN) is composed of a recurrent behavior encoder, an inter-agent multi-headed attention module, and a context-aware decoder.
We demonstrate the efficacy of our method by testing it on the Argoverse motion forecasting dataset and show its state-of-the-art performance on the public benchmark.
arXiv Detail & Related papers (2021-08-12T15:53:37Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
We propose TransFuser, a novel Multi-Modal Fusion Transformer, to integrate image and LiDAR representations using attention.
Our approach achieves state-of-the-art driving performance while reducing collisions by 76% compared to geometry-based fusion.
arXiv Detail & Related papers (2021-04-19T11:48:13Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z) - RAIST: Learning Risk Aware Traffic Interactions via Spatio-Temporal
Graph Convolutional Networks [19.582873794287632]
A key aspect of driving a road vehicle is to interact with other road users, assess their intentions and make risk-aware tactical decisions.
We propose a novel driving framework for egocentric views based on traffic graphs.
We claim that our framework learns risk-aware representations by improving on the task of risk object identification.
arXiv Detail & Related papers (2020-11-17T15:49:22Z) - Interaction-Based Trajectory Prediction Over a Hybrid Traffic Graph [4.574413934477815]
We propose to use a hybrid graph whose nodes represent both the traffic actors as well as the static and dynamic traffic elements present in the scene.
The different modes of temporal interaction (e.g., stopping and going) among actors and traffic elements are explicitly modeled by graph edges.
We show that our proposed model, TrafficGraphNet, achieves state-of-the-art trajectory prediction accuracy while maintaining a high level of interpretability.
arXiv Detail & Related papers (2020-09-27T18:20:03Z) - Traffic Agent Trajectory Prediction Using Social Convolution and
Attention Mechanism [57.68557165836806]
We propose a model to predict the trajectories of target agents around an autonomous vehicle.
We encode the target agent history trajectories as an attention mask and construct a social map to encode the interactive relationship between the target agent and its surrounding agents.
To verify the effectiveness of our method, we widely compare with several methods on a public dataset, achieving a 20% error decrease.
arXiv Detail & Related papers (2020-07-06T03:48:08Z) - Interaction Graphs for Object Importance Estimation in On-road Driving
Videos [9.344790309080283]
Learning to estimate the importance of each object on the driver's real-time decision-making may help better understand human driving behavior.
We propose a novel framework for object importance estimation using an interaction graph.
arXiv Detail & Related papers (2020-03-12T22:28:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.