論文の概要: Curiosity Based Reinforcement Learning on Robot Manufacturing Cell
- arxiv url: http://arxiv.org/abs/2011.08743v1
- Date: Tue, 17 Nov 2020 16:19:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 17:42:04.514560
- Title: Curiosity Based Reinforcement Learning on Robot Manufacturing Cell
- Title(参考訳): 好奇心に基づくロボット製造セルの強化学習
- Authors: Mohammed Sharafath Abdul Hameed, Md Muzahid Khan, Andreas Schwung
- Abstract要約: 強化学習はロボット工学やスケジューリングといったタスクを解くことに成功している。
本稿では,フレキシブルロボット製造セルのスケジューリング制御と好奇心に基づく強化学習を組み合わせた新しい組み合わせを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper introduces a novel combination of scheduling control on a flexible
robot manufacturing cell with curiosity based reinforcement learning.
Reinforcement learning has proved to be highly successful in solving tasks like
robotics and scheduling. But this requires hand tuning of rewards in problem
domains like robotics and scheduling even where the solution is not obvious. To
this end, we apply a curiosity based reinforcement learning, using intrinsic
motivation as a form of reward, on a flexible robot manufacturing cell to
alleviate this problem. Further, the learning agents are embedded into the
transportation robots to enable a generalized learning solution that can be
applied to a variety of environments. In the first approach, the curiosity
based reinforcement learning is applied to a simple structured robot
manufacturing cell. And in the second approach, the same algorithm is applied
to a graph structured robot manufacturing cell. Results from the experiments
show that the agents are able to solve both the environments with the ability
to transfer the curiosity module directly from one environment to another. We
conclude that curiosity based learning on scheduling tasks provide a viable
alternative to the reward shaped reinforcement learning traditionally used.
- Abstract(参考訳): 本稿では,フレキシブルロボット製造セルにおけるスケジューリング制御と好奇心に基づく強化学習の組み合わせを提案する。
強化学習はロボット工学やスケジューリングといった課題の解決に非常に成功している。
しかしこれは、ロボット工学のような問題領域の報酬を手動で調整し、ソリューションが明確でない場所でもスケジューリングする必要がある。
この目的のために,本質的なモチベーションを報酬として用いた好奇心に基づく強化学習を柔軟なロボット製造セルに適用し,この問題を軽減する。
さらに、輸送ロボットに学習エージェントを組み込んで、様々な環境に適用可能な一般化学習ソリューションを実現する。
第1のアプローチでは、キュリオシティに基づく強化学習を単純な構造化ロボット製造セルに適用する。
第2のアプローチでは、同じアルゴリズムをグラフ構造を持つロボット製造セルに適用する。
実験の結果、エージェントは好奇性モジュールをある環境から別の環境へ直接転送する能力で、両方の環境を解くことができることがわかった。
スケジューリングタスクに基づく好奇心に基づく学習は,従来使用されていた報酬型強化学習の代替手段となると結論づけた。
関連論文リスト
- A Retrospective on the Robot Air Hockey Challenge: Benchmarking Robust, Reliable, and Safe Learning Techniques for Real-world Robotics [53.33976793493801]
私たちは、NeurIPS 2023カンファレンスでRobot Air Hockey Challengeを組織しました。
我々は、シム・トゥ・リアルギャップ、低レベルの制御問題、安全性問題、リアルタイム要件、実世界のデータの限られた可用性など、ロボット工学における実践的な課題に焦点を当てる。
その結果、学習に基づくアプローチと事前知識を組み合わせたソリューションは、実際のデプロイメントが困難である場合にデータのみに依存するソリューションよりも優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-08T17:20:47Z) - Generalized Robot Learning Framework [10.03174544844559]
本稿では,様々なロボットや環境に容易に再現可能かつ伝達可能な,低コストなロボット学習フレームワークを提案する。
我々は,産業用ロボットにおいても,デプロイ可能な模倣学習をうまく適用できることを実証した。
論文 参考訳(メタデータ) (2024-09-18T15:34:31Z) - Growing from Exploration: A self-exploring framework for robots based on
foundation models [13.250831101705694]
我々は、ロボットが人間の介入なしに自律的に探索し学習することを可能にするGExpというフレームワークを提案する。
幼児が世界と対話する方法に触発されて、GExpはロボットに、一連の自己生成タスクで環境を理解し、探索するように促す。
論文 参考訳(メタデータ) (2024-01-24T14:04:08Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
ロボット強化学習のためのリセット不要な微調整システムであるRoboFuMEを紹介する。
我々の洞察は、オフラインの強化学習技術を利用して、事前訓練されたポリシーの効率的なオンライン微調整を確保することである。
提案手法では,既存のロボットデータセットからのデータを組み込んで,目標タスクを3時間以内の自律現実体験で改善することができる。
論文 参考訳(メタデータ) (2023-10-23T17:50:08Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Active Exploration for Robotic Manipulation [40.39182660794481]
本稿では,スパース・リワード型ロボット操作作業における効率的な学習を可能にするモデルに基づく能動探索手法を提案する。
我々は,提案アルゴリズムをシミュレーションおよび実ロボットで評価し,スクラッチから本手法を訓練した。
論文 参考訳(メタデータ) (2022-10-23T18:07:51Z) - Lifelong Robotic Reinforcement Learning by Retaining Experiences [61.79346922421323]
多くのマルチタスク強化学習は、ロボットが常にすべてのタスクからデータを収集できると仮定している。
本研究では,物理ロボットシステムの実用的制約を動機として,現実的なマルチタスクRL問題について検討する。
我々は、ロボットのスキルセットを累積的に成長させるために、過去のタスクで学んだデータとポリシーを効果的に活用するアプローチを導出する。
論文 参考訳(メタデータ) (2021-09-19T18:00:51Z) - Hierarchical Affordance Discovery using Intrinsic Motivation [69.9674326582747]
本研究では,移動ロボットの価格学習を支援するために,本質的なモチベーションを用いたアルゴリズムを提案する。
このアルゴリズムは、事前にプログラムされたアクションなしで、相互に関連のある価格を自律的に発見し、学習し、適応することができる。
一度学習すると、これらの余裕はアルゴリズムによって様々な困難を伴うタスクを実行するために一連のアクションを計画するために使われる。
論文 参考訳(メタデータ) (2020-09-23T07:18:21Z) - Efficient reinforcement learning control for continuum robots based on
Inexplicit Prior Knowledge [3.3645162441357437]
本稿では,未熟な事前知識に基づく効率的な強化学習手法を提案する。
本手法を用いることで、腱駆動ロボットのアクティブな視覚追跡と距離維持を実現することができる。
論文 参考訳(メタデータ) (2020-02-26T15:47:11Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。