SOCAIRE: Forecasting and Monitoring Urban Air Quality in Madrid
- URL: http://arxiv.org/abs/2011.09741v1
- Date: Thu, 19 Nov 2020 09:39:10 GMT
- Title: SOCAIRE: Forecasting and Monitoring Urban Air Quality in Madrid
- Authors: Rodrigo de Medrano, V\'ictor de Buen Remiro, Jos\'e L. Aznarte
- Abstract summary: We present SOCAIRE, an operational tool based on neural, statistical and nested models.
It focuses on modeling each and every available component which might play a role in air quality: past concentrations of pollutants, human activity, numerical pollution estimation, and numerical weather predictions.
This tool is currently in operation in Madrid, producing daily air quality predictions for the next 48 hours.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Air quality has become one of the main issues in public health and urban
planning management, due to the proven adverse effects of high pollutant
concentrations. Considering the mitigation measures that cities all over the
world are taking in order to face frequent low air quality episodes, the
capability of foreseeing future pollutant concentrations is of great
importance. Through this paper, we present SOCAIRE, an operational tool based
on a Bayesian and spatiotemporal ensemble of neural and statistical nested
models. SOCAIRE integrates endogenous and exogenous information in order to
predict and monitor future distributions of the concentration for several
pollutants in the city of Madrid. It focuses on modeling each and every
available component which might play a role in air quality: past concentrations
of pollutants, human activity, numerical pollution estimation, and numerical
weather predictions. This tool is currently in operation in Madrid, producing
daily air quality predictions for the next 48 hours and anticipating the
probability of the activation of the measures included in the city's official
air quality \no protocols through probabilistic inferences about compound
events.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Novel Approach for Predicting the Air Quality Index of Megacities through Attention-Enhanced Deep Multitask Spatiotemporal Learning [0.2886273197127056]
Air pollution remains one of the most formidable environmental threats to human health globally, particularly in urban areas.
Megacities, defined as cities with populations exceeding 10 million, are frequent hotspots of severe pollution.
This paper proposes an attention-enhanced deep machine learning model based on long-term memory networks for long-term air quality monitoring and prediction.
arXiv Detail & Related papers (2024-07-15T23:43:50Z) - Urban Air Pollution Forecasting: a Machine Learning Approach leveraging Satellite Observations and Meteorological Forecasts [0.11249583407496218]
Air pollution poses a significant threat to public health and well-being, particularly in urban areas.
This study introduces a series of machine-learning models that integrate data from the Sentinel-5P satellite, meteorological conditions, and topological characteristics to forecast future levels of five major pollutants.
arXiv Detail & Related papers (2024-05-30T10:02:53Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - A Framework for Scalable Ambient Air Pollution Concentration Estimation [0.0]
Ambient air pollution remains a critical issue in the United Kingdom, where data on air pollution concentrations form the foundation for interventions aimed at improving air quality.
We introduce a data-driven supervised machine learning model framework designed to address temporal and spatial data gaps by filling missing measurements.
This approach provides a comprehensive dataset for England throughout 2018 at a 1kmx1km hourly resolution.
arXiv Detail & Related papers (2024-01-16T18:03:07Z) - Novel Regression and Least Square Support Vector Machine Learning
Technique for Air Pollution Forecasting [0.0]
Improper detection of air pollution benchmarks results in severe complications for humans and living creatures.
A novel technique called, Discretized Regression and Least Square Support Vector (DR-LSSV) based air pollution forecasting is proposed.
The results indicate that the proposed DR-LSSV Technique can efficiently enhance air pollution forecasting performance.
arXiv Detail & Related papers (2023-06-11T06:56:00Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Data-driven Real-time Short-term Prediction of Air Quality: Comparison
of ES, ARIMA, and LSTM [0.0]
We use a data-driven approach to predict air quality based on historical data.
Considering prediction accuracy and time complexity, our experiments reveal that for short-term air pollution prediction ES performs better than ARIMA and LSTM.
arXiv Detail & Related papers (2022-11-16T09:37:08Z) - Data-Centric Epidemic Forecasting: A Survey [56.99209141838794]
This survey delves into various data-driven methodological and practical advancements.
We enumerate the large number of epidemiological datasets and novel data streams that are relevant to epidemic forecasting.
We also discuss experiences and challenges that arise in real-world deployment of these forecasting systems.
arXiv Detail & Related papers (2022-07-19T16:15:11Z) - Dynamic Price of Parking Service based on Deep Learning [68.8204255655161]
The improvement of air-quality in urban areas is one of the main concerns of public government bodies.
This concern emerges from the evidence between the air quality and the public health.
Proposal for dynamic prices in regulated parking services is presented.
arXiv Detail & Related papers (2022-01-11T20:31:35Z) - Federated Learning in the Sky: Aerial-Ground Air Quality Sensing
Framework with UAV Swarms [53.38353133198842]
Air quality significantly affects human health, it is increasingly important to accurately and timely predict the Air Quality Index (AQI)
This paper proposes a new federated learning-based aerial-ground air quality sensing framework for fine-grained 3D air quality monitoring and forecasting.
For ground sensing systems, we propose a Graph Convolutional neural network-based Long Short-Term Memory (GC-LSTM) model to achieve accurate, real-time and future AQI inference.
arXiv Detail & Related papers (2020-07-23T13:32:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.