論文の概要: Electric Vehicle Charging Infrastructure Planning: A Scalable
Computational Framework
- arxiv url: http://arxiv.org/abs/2011.09967v1
- Date: Tue, 17 Nov 2020 16:48:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 15:46:19.864876
- Title: Electric Vehicle Charging Infrastructure Planning: A Scalable
Computational Framework
- Title(参考訳): 電気自動車の充電インフラ計画:スケーラブルな計算フレームワーク
- Authors: Wanshi Hong, Cong Zhang, Cy Chan, Bin Wang
- Abstract要約: 交通システムと送電網のネットワーク規模が増大しているため, 大規模空間における最適充電インフラ計画問題は困難である。
本稿では,密に統合された輸送網と電力網網を網羅する電気自動車充電インフラ計画のためのスケーラブルな計算フレームワークの実証に焦点をあてる。
- 参考スコア(独自算出の注目度): 5.572792035859953
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The optimal charging infrastructure planning problem over a large geospatial
area is challenging due to the increasing network sizes of the transportation
system and the electric grid. The coupling between the electric vehicle travel
behaviors and charging events is therefore complex. This paper focuses on the
demonstration of a scalable computational framework for the electric vehicle
charging infrastructure planning over the tightly integrated transportation and
electric grid networks. On the transportation side, a charging profile
generation strategy is proposed leveraging the EV energy consumption model,
trip routing, and charger selection methods. On the grid side, a genetic
algorithm is utilized within the optimal power flow program to solve the
optimal charger placement problem with integer variables by adaptively
evaluating candidate solutions in the current iteration and generating new
solutions for the next iterations.
- Abstract(参考訳): 交通システムと送電網のネットワーク規模が増大しているため, 大規模空間における最適充電インフラ計画問題は困難である。
従って、電気自動車の走行行動と充電イベントの結合は複雑である。
本稿では,密に統合された輸送網と電力網網を網羅する電気自動車充電インフラ計画のためのスケーラブルな計算フレームワークの実証に焦点をあてる。
輸送面では、EVエネルギー消費モデル、旅行経路、充電器選択方法を活用する充電プロファイル生成戦略が提案されている。
グリッド側では、遺伝的アルゴリズムを最適パワーフロープログラム内で活用し、現在の反復における候補解を適応的に評価し、次のイテレーションのための新しい解を生成することにより、整数変数による最適チャージャー配置問題を解く。
関連論文リスト
- EV-EcoSim: A grid-aware co-simulation platform for the design and
optimization of electric vehicle charging infrastructure [1.3271805797333298]
EV-EcoSimは電気自動車の充電、バッテリーシステム、ソーラー太陽光発電システム、グリッドトランスフォーマー、制御戦略、配電システムを組み合わせたシミュレーションプラットフォームである。
このピソンベースのプラットフォームは、リアルタイム操作のための後退地平線制御スキームと、計画問題のためのワンショット制御スキームを実行することができる。
本研究では,電気自動車充電施設の計画において,電池の完全性は決定を完全に変えることができることを示す。
論文 参考訳(メタデータ) (2024-01-09T18:08:34Z) - Charge Manipulation Attacks Against Smart Electric Vehicle Charging Stations and Deep Learning-based Detection Mechanisms [49.37592437398933]
電気自動車充電ステーション(EVCS)は、グリーントランスポートの実現に向けた重要なステップとなる。
我々は、攻撃者がスマート充電操作中に交換された情報を操作しているEV充電に対する充電操作攻撃(CMA)を調査した。
本稿では,EV充電に関わるパラメータを監視してCMAを検出する,教師なしのディープラーニングに基づくメカニズムを提案する。
論文 参考訳(メタデータ) (2023-10-18T18:38:59Z) - DClEVerNet: Deep Combinatorial Learning for Efficient EV Charging
Scheduling in Large-scale Networked Facilities [5.78463306498655]
電気自動車(EV)は配電ネットワークを著しくストレスし、性能を劣化させ、安定性を損なう可能性がある。
現代の電力網は、EV充電スケジューリングをスケーラブルで効率的な方法で最適化できる、コーディネートまたはスマートな充電戦略を必要とする。
ネットワークの利用可能な電力容量とステーションの占有限度を考慮しつつ、EV利用者の総福祉利益を最大化する時間結合二元最適化問題を定式化する。
論文 参考訳(メタデータ) (2023-05-18T14:03:47Z) - GP CC-OPF: Gaussian Process based optimization tool for
Chance-Constrained Optimal Power Flow [54.94701604030199]
Gaussian Process (GP) ベースのChance-Constrained Optimal Flow (CC-OPF) は、電力グリッドにおけるエコノミックディスパッチ(ED)問題のためのオープンソースのPythonコードである。
CC-OPモデルに基づく新しいデータ駆動手法を提案し,複雑性と精度のトレードオフにより大規模な回帰問題を解く。
論文 参考訳(メタデータ) (2023-02-16T17:59:06Z) - Data-Driven Chance Constrained AC-OPF using Hybrid Sparse Gaussian
Processes [57.70237375696411]
入力不確実性を伴う潮流方程式をモデル化するために,スパースプロセスとハイブリッドガウスプロセス(GP)フレームワークを用いた高速データ駆動構成を提案する。
提案手法の有効性は,複数のIEEEテストケースに対して,最大2倍の高速かつ高精度な解を示す数値的な研究によって主張する。
論文 参考訳(メタデータ) (2022-08-30T09:27:59Z) - A Multi-Objective approach to the Electric Vehicle Routing Problem [0.0]
電気自動車ルーティング問題(EVRP)は、燃料ベースの車からより健康的で効率的な電気自動車(EV)に移行するために、研究者や工業者から大きな関心を集めている。
以前の作業では、ロジスティクスや配送関連のソリューションをターゲットにしており、複数の停止を行った後、同質の商用EVが最初のポイントに戻らなければならない。
我々は、旅行時間と充電の累積コストを最小化する多目的最適化を行う。
論文 参考訳(メタデータ) (2022-08-26T05:09:59Z) - Data-Driven Stochastic AC-OPF using Gaussian Processes [54.94701604030199]
大量の再生可能エネルギーを電力網に統合することは、おそらく気候変動を遅らせる電力網からの二酸化炭素排出量を減らす最も有効な方法だろう。
本稿では、不確実な入力を組み込むことのできる交流電力流方程式に基づく代替データ駆動方式を提案する。
GPアプローチは、このギャップを交流電力流方程式に閉じるために、単純だが制約のないデータ駆動アプローチを学ぶ。
論文 参考訳(メタデータ) (2022-07-21T23:02:35Z) - A new Hyper-heuristic based on Adaptive Simulated Annealing and
Reinforcement Learning for the Capacitated Electric Vehicle Routing Problem [9.655068751758952]
都市部では環境汚染と地球温暖化を減らすために電気自動車(EV)が採用されている。
社会と経済の持続可能性に影響を与え続けているラストマイルロジスティクスの軌道をルーティングするのにはまだ不足がある。
本稿では,高ヒューリスティック適応アニーリングと強化学習というハイパーヒューリスティックなアプローチを提案する。
論文 参考訳(メタデータ) (2022-06-07T11:10:38Z) - Estimation of Electric Vehicle Public Charging Demand using Cellphone
Data and Points of Interest-based Segmentation [0.0]
道路の電気化競争が始まり、ドライバーが燃料駆動の車両から電気自動車に乗り換えるよう促すには、堅牢な電気自動車(EV)充電インフラが必要である。
本稿では,革新的なEV充電需要推定とセグメンテーション手法を提案する。
論文 参考訳(メタデータ) (2022-06-02T09:54:11Z) - An Energy Consumption Model for Electrical Vehicle Networks via Extended
Federated-learning [50.85048976506701]
本稿では,フェデレートラーニングモデルに基づく不安度を測る新しい手法を提案する。
バッテリー消費を推定し、車両ネットワークにエネルギー効率の高いルートプランニングを提供する。
論文 参考訳(メタデータ) (2021-11-13T15:03:44Z) - Offline Contextual Bandits for Wireless Network Optimization [107.24086150482843]
本稿では,ユーザ要求の変化に応じて,ネットワーク内の各セルの構成パラメータを自動的に調整するポリシの学習方法について検討する。
私たちのソリューションは、オフライン学習のための既存の方法を組み合わせて、この文脈で生じる重要な課題を克服する原則的な方法でそれらを適応します。
論文 参考訳(メタデータ) (2021-11-11T11:31:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。