Phase-Space Methods for Simulating the Dissipative Many-Body Dynamics of
Collective Spin Systems
- URL: http://arxiv.org/abs/2011.10049v4
- Date: Mon, 17 May 2021 08:36:44 GMT
- Title: Phase-Space Methods for Simulating the Dissipative Many-Body Dynamics of
Collective Spin Systems
- Authors: Julian Huber, Peter Kirton and Peter Rabl
- Abstract summary: We describe an efficient numerical method for simulating the dynamics and steady states of collective spin systems in the presence of dephasing and decay.
We benchmark this numerical technique for known superradiant decay and spin-squeezing processes and illustrate its application for the simulation of non-equilibrium phase transitions in dissipative spin lattice models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe an efficient numerical method for simulating the dynamics and
steady states of collective spin systems in the presence of dephasing and
decay. The method is based on the Schwinger boson representation of spin
operators and uses an extension of the truncated Wigner approximation to map
the exact open system dynamics onto stochastic differential equations for the
corresponding phase space distribution. This approach is most effective in the
limit of very large spin quantum numbers, where exact numerical simulations and
other approximation methods are no longer applicable. We benchmark this
numerical technique for known superradiant decay and spin-squeezing processes
and illustrate its application for the simulation of non-equilibrium phase
transitions in dissipative spin lattice models.
Related papers
- Symmetry based efficient simulation of dissipative quantum many-body dynamics in subwavelength quantum emitter arrays [0.0]
We numerically simulate the dissipative dynamics of large numbers of quantum emitters in ordered arrays.
We characterize the excited population, the total photon emission rate and the second order intensity correlation function.
arXiv Detail & Related papers (2024-09-04T15:04:44Z) - Numerical Methods for Quantum Spin Dynamics [0.0]
This report is concerned with the efficiency of numerical methods for simulating quantum spin systems.
The accuracy of existing techniques is assessed in the presence of chirped pulses.
The results of this work are implemented in the Python package MagPy to provide a better error-to-cost ratio than current approaches.
arXiv Detail & Related papers (2023-12-25T00:35:24Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Reservoir Computing with Error Correction: Long-term Behaviors of
Stochastic Dynamical Systems [5.815325960286111]
We propose a data-driven framework combining Reservoir Computing and Normalizing Flow to study this issue.
We verify the effectiveness of the proposed framework in several experiments, including the Van der Pal, El Nino-Southern Oscillation simplified model, and Lorenz system.
arXiv Detail & Related papers (2023-05-01T05:50:17Z) - Simulations of quantum dynamics with fermionic phase-space
representations using numerical matrix factorizations as stochastic gauges [0.0]
We explore the use of dynamical diffusion gauges in quantum dynamics simulations.
For the physical systems with fermionic particles considered here, the numerical evaluation of the new diffusion gauges allows us to double the practical simulation time.
This development may have far reaching consequences for future quantum dynamical simulations of many-body systems.
arXiv Detail & Related papers (2023-04-11T11:33:55Z) - Modeling the space-time correlation of pulsed twin beams [68.8204255655161]
Entangled twin-beams generated by parametric down-conversion are among the favorite sources for imaging-oriented applications.
We propose a semi-analytic model which aims to bridge the gap between time-consuming numerical simulations and the unrealistic plane-wave pump theory.
arXiv Detail & Related papers (2023-01-18T11:29:49Z) - Calculating non-linear response functions for multi-dimensional
electronic spectroscopy using dyadic non-Markovian quantum state diffusion [68.8204255655161]
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling electronic excitation to a structured environment.
A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space but with the same noise.
arXiv Detail & Related papers (2022-07-06T15:30:38Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Realistic simulations of spin squeezing and cooperative coupling effects
in large ensembles of interacting two-level systems [0.0]
We describe an efficient numerical method for simulating the dynamics of interacting spin ensembles in the presence of dephasing and decay.
This opens up the possibility to perform accurate real-scale simulations of a diverse range of experiments in quantum optics or with solid-state spin ensembles under realistic laboratory conditions.
arXiv Detail & Related papers (2021-04-30T18:00:00Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
We introduce a semi-analytic method based on the Dyson expansion that allows us to time-evolve driven quantum systems much faster than standard numerical methods.
We show results of the optimization of a two-qubit gate using transmon qubits in the circuit QED architecture.
arXiv Detail & Related papers (2020-12-16T21:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.