Realistic simulations of spin squeezing and cooperative coupling effects
in large ensembles of interacting two-level systems
- URL: http://arxiv.org/abs/2105.00004v3
- Date: Mon, 31 Jan 2022 10:23:08 GMT
- Title: Realistic simulations of spin squeezing and cooperative coupling effects
in large ensembles of interacting two-level systems
- Authors: Julian Huber and Ana Maria Rey and Peter Rabl
- Abstract summary: We describe an efficient numerical method for simulating the dynamics of interacting spin ensembles in the presence of dephasing and decay.
This opens up the possibility to perform accurate real-scale simulations of a diverse range of experiments in quantum optics or with solid-state spin ensembles under realistic laboratory conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We describe an efficient numerical method for simulating the dynamics of
interacting spin ensembles in the presence of dephasing and decay. The method
builds on the discrete truncated Wigner approximation for isolated systems,
which combines the mean-field dynamics of a spin ensemble with a Monte Carlo
sampling of discrete initial spin values to account for quantum correlations.
Here we show how this approach can be generalized for dissipative spin systems
by replacing the deterministic mean-field evolution by a stochastic process,
which describes the decay of coherences and populations while preserving the
length of each spin. We demonstrate the application of this technique for
simulating nonclassical spin-squeezing effects or the dynamics and steady
states of cavity QED models with hundred thousand interacting two-level systems
and without relying on any symmetries. This opens up the possibility to perform
accurate real-scale simulations of a diverse range of experiments in quantum
optics or with solid-state spin ensembles under realistic laboratory
conditions.
Related papers
- Photonic Simulation of Localization Phenomena Using Boson Sampling [0.0]
We propose boson sampling as an alternative compact synthetic platform performing at room temperature.
By mapping the time-evolution unitary of a Hamiltonian onto an interferometer via continuous-variable gate decompositions, we present proof-of-principle results of localization characteristics of a single particle.
arXiv Detail & Related papers (2024-10-17T18:00:05Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Quantum Simulation of Spin-Boson Models with Structured Bath [1.7148514211041472]
Trapped ions present a natural platform for simulating the quantum dynamics of open quantum systems.
We demonstrate the capability for adjusting the bath's temperature and continuous spectral density by adding randomness to fully programmable control parameters.
The experimental outcomes closely align with theoretical predictions, indicating successful simulation of open quantum systems using a trapped-ion system.
arXiv Detail & Related papers (2024-05-23T14:32:04Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Phase-Space Methods for Simulating the Dissipative Many-Body Dynamics of
Collective Spin Systems [0.0]
We describe an efficient numerical method for simulating the dynamics and steady states of collective spin systems in the presence of dephasing and decay.
We benchmark this numerical technique for known superradiant decay and spin-squeezing processes and illustrate its application for the simulation of non-equilibrium phase transitions in dissipative spin lattice models.
arXiv Detail & Related papers (2020-11-19T19:00:00Z) - Simulation of complex dynamics of mean-field $p$-spin models using
measurement-based quantum feedback control [0.0]
We apply a new method for simulating nonlinear dynamics of many-body spin systems using quantum measurement and feedback.
We study applications including properties of dynamical phase transitions and the emergence of spontaneous symmetry breaking in the adiabatic dynamics of the collective spin.
arXiv Detail & Related papers (2020-04-23T18:22:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.