Discriminative Localized Sparse Representations for Breast Cancer
Screening
- URL: http://arxiv.org/abs/2011.10201v1
- Date: Fri, 20 Nov 2020 04:15:17 GMT
- Title: Discriminative Localized Sparse Representations for Breast Cancer
Screening
- Authors: Sokratis Makrogiannis and Chelsea E. Harris and Keni Zheng
- Abstract summary: Early detection and diagnosis of breast cancer may reduce its mortality and improve the quality of life.
Computer-aided detection (CADx) and computer-aided diagnosis (CAD) techniques have shown promise for reducing the burden of human expert reading.
Sparse analysis techniques have produced relevant results for representing and recognizing imaging patterns.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast cancer is the most common cancer among women both in developed and
developing countries. Early detection and diagnosis of breast cancer may reduce
its mortality and improve the quality of life. Computer-aided detection (CADx)
and computer-aided diagnosis (CAD) techniques have shown promise for reducing
the burden of human expert reading and improve the accuracy and reproducibility
of results. Sparse analysis techniques have produced relevant results for
representing and recognizing imaging patterns. In this work we propose a method
for Label Consistent Spatially Localized Ensemble Sparse Analysis (LC-SLESA).
In this work we apply dictionary learning to our block based sparse analysis
method to classify breast lesions as benign or malignant. The performance of
our method in conjunction with LC-KSVD dictionary learning is evaluated using
10-, 20-, and 30-fold cross validation on the MIAS dataset. Our results
indicate that the proposed sparse analyses may be a useful component for breast
cancer screening applications.
Related papers
- Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Adversarially Robust Feature Learning for Breast Cancer Diagnosis [1.9060744600841881]
Adversarial data can lead to malfunction of deep learning applications.
We propose a novel adversarially robust feature learning (ARFL) method for a real-world application of breast cancer diagnosis.
arXiv Detail & Related papers (2024-02-13T20:02:34Z) - Intelligent Breast Cancer Diagnosis with Heuristic-assisted
Trans-Res-U-Net and Multiscale DenseNet using Mammogram Images [0.0]
Breast cancer (BC) significantly contributes to cancer-related mortality in women.
accurately distinguishing malignant mass lesions remains challenging.
We propose a novel deep learning approach for BC screening utilizing mammography images.
arXiv Detail & Related papers (2023-10-30T10:22:14Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Masked Video Modeling with Correlation-aware Contrastive Learning for
Breast Cancer Diagnosis in Ultrasound [7.957750764582688]
We propose a pioneering approach that directly utilizes US videos in computer-aided breast cancer diagnosis.
It leverages masked video modeling as pretraning to reduce reliance on dataset size and detailed annotations.
Experimental results show that our proposed approach achieved promising classification performance and can outperform other state-of-the-art methods.
arXiv Detail & Related papers (2022-08-21T13:23:32Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
Open-set recognition generalizes a classification task by classifying test samples as one of the known classes from training or "unknown"
We apply a recent existing Gaussian mixture variational autoencoder model, which achieves state-of-the-art results for image datasets, to breast cancer patient data.
Not only do we obtain more accurate and robust classification results, with a 24.5% average F1 increase compared to a recent method, but we also reexamine open-set recognition in terms of deployability to a clinical setting.
arXiv Detail & Related papers (2022-01-09T04:35:55Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - DenseNet for Breast Tumor Classification in Mammographic Images [0.0]
The aim of this study is to build a deep convolutional neural network method for automatic detection, segmentation, and classification of breast lesions in mammography images.
Based on deep learning the Mask-CNN (RoIAlign) method was developed to features selection and extraction; and the classification was carried out by DenseNet architecture.
arXiv Detail & Related papers (2021-01-24T03:30:59Z) - Learning from Suspected Target: Bootstrapping Performance for Breast
Cancer Detection in Mammography [6.323318523772466]
We introduce a novel top likelihood loss together with a new sampling procedure to select and train the suspected target regions.
We firstly test our proposed method on a private dense mammogram dataset.
Results show that our proposed method greatly reduce the false positive rate and the specificity is increased by 0.25 on detecting mass type cancer.
arXiv Detail & Related papers (2020-03-01T09:04:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.