論文の概要: Certified Monotonic Neural Networks
- arxiv url: http://arxiv.org/abs/2011.10219v1
- Date: Fri, 20 Nov 2020 04:58:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 05:14:10.539496
- Title: Certified Monotonic Neural Networks
- Title(参考訳): 認証単調ニューラルネットワーク
- Authors: Xingchao Liu, Xing Han, Na Zhang, Qiang Liu
- Abstract要約: 本稿では,混合整数線形計画問題の解法により,一般のピースワイド線形ニューラルネットワークの単調性を証明することを提案する。
我々のアプローチでは、重み空間に対する人間設計の制約を必要とせず、より正確な近似が得られる。
- 参考スコア(独自算出の注目度): 15.537695725617576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning monotonic models with respect to a subset of the inputs is a
desirable feature to effectively address the fairness, interpretability, and
generalization issues in practice. Existing methods for learning monotonic
neural networks either require specifically designed model structures to ensure
monotonicity, which can be too restrictive/complicated, or enforce monotonicity
by adjusting the learning process, which cannot provably guarantee the learned
model is monotonic on selected features. In this work, we propose to certify
the monotonicity of the general piece-wise linear neural networks by solving a
mixed integer linear programming problem.This provides a new general approach
for learning monotonic neural networks with arbitrary model structures. Our
method allows us to train neural networks with heuristic monotonicity
regularizations, and we can gradually increase the regularization magnitude
until the learned network is certified monotonic. Compared to prior works, our
approach does not require human-designed constraints on the weight space and
also yields more accurate approximation. Empirical studies on various datasets
demonstrate the efficiency of our approach over the state-of-the-art methods,
such as Deep Lattice Networks.
- Abstract(参考訳): 入力のサブセットに関する単調モデルを学ぶことは、実際の公正性、解釈可能性、一般化問題を効果的に解決する上で望ましい特徴である。
既存のモノトニックニューラルネットワークの学習方法は、モノトニック性を保証するために特別に設計されたモデル構造を必要とするか、学習プロセスを調整することによってモノトニック性を強制するかのどちらかである。
本研究では、混合整数線形計画問題の解法により、一般のピースワイド線形ニューラルネットワークの単調性を証明し、任意のモデル構造を持つ単調ニューラルネットワークを学習するための新しい一般的なアプローチを提案する。
本手法では,ニューラルネットワークをヒューリスティックな単調性正規化でトレーニングすることが可能であり,学習ネットワークが単調性認定を受けるまで,徐々に正規化の規模を増大させることができる。
先行研究と比較して,重み空間に対する人間設計の制約は必要とせず,より正確な近似も得られる。
様々なデータセットに関する実証的研究は、Deep Lattice Networksのような最先端の手法に対するアプローチの有効性を示す。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
従来の活性化機能を持つネットワークの代替として、活性化を伴う正弦波ニューラルネットワークが提案されている。
まず,このような正弦波ニューラルネットワークの簡易版を提案する。
次に、ニューラルタンジェントカーネルの観点からこれらのネットワークの挙動を分析し、そのカーネルが調整可能な帯域幅を持つ低域フィルタを近似することを実証する。
論文 参考訳(メタデータ) (2022-11-26T07:41:48Z) - Adaptive Convolutional Dictionary Network for CT Metal Artifact
Reduction [62.691996239590125]
本稿では,金属人工物削減のための適応畳み込み辞書ネットワーク(ACDNet)を提案する。
我々のACDNetは、トレーニングデータを介して、アーティファクトフリーCT画像の事前を自動で学習し、入力されたCT画像ごとに表現カーネルを適応的に調整することができる。
本手法は,モデルに基づく手法の明確な解釈可能性を継承し,学習に基づく手法の強力な表現能力を維持する。
論文 参考訳(メタデータ) (2022-05-16T06:49:36Z) - An alternative approach to train neural networks using monotone
variational inequality [22.320632565424745]
本稿では,モノトーンベクトル場を用いたニューラルネットワークトレーニングの代替手法を提案する。
我々のアプローチは、事前訓練されたニューラルネットワークのより効率的な微調整に利用できる。
論文 参考訳(メタデータ) (2022-02-17T19:24:20Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
暗黙のニューラルネットワークは、競合性能とメモリ消費の削減を提供する。
入力逆流の摂動に関して、それらは不安定なままである。
本稿では,暗黙的ニューラルネットワークのロバスト性検証のための理論的および計算的枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-10T03:08:55Z) - Learning Neural Network Subspaces [74.44457651546728]
近年の観測は,ニューラルネットワーク最適化の展望の理解を深めている。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
1つのモデルのトレーニングと同じ計算コストで、高精度ニューラルネットワークの線、曲線、単純軸を学習します。
論文 参考訳(メタデータ) (2021-02-20T23:26:58Z) - Learning for Integer-Constrained Optimization through Neural Networks
with Limited Training [28.588195947764188]
我々は、その構成成分の機能の観点から完全に解釈可能な、対称的で分解されたニューラルネットワーク構造を導入する。
整数制約の根底にあるパターンを活用することで、導入されたニューラルネットワークは、限られたトレーニングでより優れた一般化性能を提供する。
提案手法は, 半分解フレームワークにさらに拡張可能であることを示す。
論文 参考訳(メタデータ) (2020-11-10T21:17:07Z) - The Surprising Simplicity of the Early-Time Learning Dynamics of Neural
Networks [43.860358308049044]
研究において、これらの共通認識は、学習の初期段階において完全に誤りであることを示す。
この驚くべき単純さは、畳み込みアーキテクチャを持つより多くのレイヤを持つネットワークで持続することができる、と私たちは主張する。
論文 参考訳(メタデータ) (2020-06-25T17:42:49Z) - Counterexample-Guided Learning of Monotonic Neural Networks [32.73558242733049]
単調性制約に注目するが、これは一般的であり、特定の入力特徴の値が増加するにつれて関数の出力が増加することが要求される。
本研究では,予測時の単調性制約を確実に強制する逆例誘導手法を開発した。
深層学習の帰納バイアスとして単調性を用いる手法も提案する。
論文 参考訳(メタデータ) (2020-06-16T01:04:26Z) - Monotone operator equilibrium networks [97.86610752856987]
我々はモノトン作用素の理論に基づく新しい暗黙深度モデル、モノトン演算子平衡ネットワーク(monDEQ)を開発した。
暗黙的ネットワークの平衡点の発見と単調作用素分割問題の解法との密接な関係を示す。
次に、ネットワークのパラメータ化を開発し、全ての作用素が単調であり続けることを保証し、ユニークな平衡点の存在を保証する。
論文 参考訳(メタデータ) (2020-06-15T17:57:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。