Exploring the political pulse of a country using data science tools
- URL: http://arxiv.org/abs/2011.10264v1
- Date: Fri, 20 Nov 2020 08:17:12 GMT
- Title: Exploring the political pulse of a country using data science tools
- Authors: Miguel G. Folgado and Ver\'onica Sanz
- Abstract summary: We consider tweets from leaders of political parties as a dynamical proxy to political programmes and ideas.
We analyse levels of positive and negative sentiment in the tweets using new tools adapted to social media.
We train an Artificial Intelligence to recognise the political affiliation of a tweet.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper we illustrate the use of Data Science techniques to analyse
complex human communication. In particular, we consider tweets from leaders of
political parties as a dynamical proxy to political programmes and ideas. We
also study the temporal evolution of their contents as a reaction to specific
events. We analyse levels of positive and negative sentiment in the tweets
using new tools adapted to social media. We also train an Artificial
Intelligence to recognise the political affiliation of a tweet. The AI is able
to predict the origin of the tweet with a precision in the range of 71-75\%,
and the political leaning (left or right) with a precision of around 90\%. This
study is meant to be viewed as a proof-of-concept of interdisciplinary nature,
at the interface between Data Science and political analysis.
Related papers
- Detecting Political Opinions in Tweets through Bipartite Graph Analysis:
A Skip Aggregation Graph Convolution Approach [9.350629400940493]
We focus on the 2020 US presidential election and create a large-scale dataset from Twitter.
To detect political opinions in tweets, we build a user-tweet bipartite graph based on users' posting and retweeting behaviors.
We introduce a novel skip aggregation mechanism that makes tweet nodes aggregate information from second-order neighbors.
arXiv Detail & Related papers (2023-04-22T10:38:35Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
We use a dataset of 15 million election-related tweets in the six months preceding election day.
We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods.
arXiv Detail & Related papers (2023-01-02T12:40:05Z) - PAR: Political Actor Representation Learning with Social Context and
Expert Knowledge [45.215862050840116]
We propose textbfPAR, a textbfPolitical textbfActor textbfRepresentation learning framework.
We retrieve and extract factual statements about legislators to leverage social context information.
We then construct a heterogeneous information network to incorporate social context and use relational graph neural networks to learn legislator representations.
arXiv Detail & Related papers (2022-10-15T19:28:06Z) - Tweets2Stance: Users stance detection exploiting Zero-Shot Learning
Algorithms on Tweets [0.06372261626436675]
The aim of the study is to predict the stance of a Party p in regard to each statement s exploiting what the Twitter Party account wrote on Twitter.
Results obtained from multiple experiments show that Tweets2Stance can correctly predict the stance with a general minimum MAE of 1.13, which is a great achievement considering the task complexity.
arXiv Detail & Related papers (2022-04-22T14:00:11Z) - Sentiment Analysis of Political Tweets for Israel using Machine Learning [0.0]
This research proposes an analytical study using Israeli political Twitter data to interpret public opinion towards the Palestinian-Israeli conflict.
The attitudes of ethnic groups and opinion leaders in the form of tweets are analyzed using Machine Learning algorithms.
arXiv Detail & Related papers (2022-04-12T12:07:43Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
This paper focuses on the design of a novel system for identifying Twitter bots based on labeled Twitter data.
Supervised machine learning (ML) framework is adopted using an Extreme Gradient Boosting (XGBoost) algorithm.
Our study also deploys Shapley Additive Explanations (SHAP) for explaining the ML model predictions.
arXiv Detail & Related papers (2021-12-08T14:12:24Z) - What goes on inside rumour and non-rumour tweets and their reactions: A
Psycholinguistic Analyses [58.75684238003408]
psycho-linguistics analyses of social media text are vital for drawing meaningful conclusions to mitigate misinformation.
This research contributes by performing an in-depth psycholinguistic analysis of rumours related to various kinds of events.
arXiv Detail & Related papers (2021-11-09T07:45:11Z) - A Machine Learning Pipeline to Examine Political Bias with Congressional
Speeches [0.3062386594262859]
We give machine learning approaches to study political bias in two ideologically diverse social media forums: Gab and Twitter.
Our proposed methods exploit the use of transcripts collected from political speeches in US congress to label the data.
We also present a machine learning approach that combines features from cascades and text to forecast cascade's political bias with an accuracy of about 85%.
arXiv Detail & Related papers (2021-09-18T21:15:21Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
A way of reducing polarization would be by distributing cross-partisan news among individuals with distinct political orientations.
This study investigates whether this holds in the context of nationwide elections in Brazil and Canada.
arXiv Detail & Related papers (2021-09-18T11:34:04Z) - Cross-Domain Learning for Classifying Propaganda in Online Contents [67.10699378370752]
We present an approach to leverage cross-domain learning, based on labeled documents and sentences from news and tweets, as well as political speeches with a clear difference in their degrees of being propagandistic.
Our experiments demonstrate the usefulness of this approach, and identify difficulties and limitations in various configurations of sources and targets for the transfer step.
arXiv Detail & Related papers (2020-11-13T10:19:13Z) - Inferring Political Preferences from Twitter [0.0]
Political Sentiment Analysis of social media helps the political strategists to scrutinize the performance of a party or candidate.
During the time of elections, the social networks get flooded with blogs, chats, debates and discussions about the prospects of political parties and politicians.
In this work, we chose to identify the inclination of political opinions present in Tweets by modelling it as a text classification problem using classical machine learning.
arXiv Detail & Related papers (2020-07-21T05:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.