論文の概要: Beyond explaining: XAI-based Adaptive Learning with SHAP Clustering for
Energy Consumption Prediction
- arxiv url: http://arxiv.org/abs/2402.04982v1
- Date: Wed, 7 Feb 2024 15:58:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 14:39:34.827907
- Title: Beyond explaining: XAI-based Adaptive Learning with SHAP Clustering for
Energy Consumption Prediction
- Title(参考訳): エネルギー消費予測のためのSHAPクラスタリングを用いたXAIベースの適応学習
- Authors: Tobias Clement and Hung Truong Thanh Nguyen and Nils Kemmerzell and
Mohamed Abdelaal and Davor Stjelja
- Abstract要約: モデル予測を説明するためのSHAP値を取得し、異なるパターンと外れ値を特定するためのSHAP値をクラスタリングし、派生したSHAPクラスタリング特性に基づいてモデルを精錬する。
両タスクタイプにおいて,本手法の有効性を実証し,予測性能と解釈可能なモデル説明の改善を図った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an approach integrating explainable artificial
intelligence (XAI) techniques with adaptive learning to enhance energy
consumption prediction models, with a focus on handling data distribution
shifts. Leveraging SHAP clustering, our method provides interpretable
explanations for model predictions and uses these insights to adaptively refine
the model, balancing model complexity with predictive performance. We introduce
a three-stage process: (1) obtaining SHAP values to explain model predictions,
(2) clustering SHAP values to identify distinct patterns and outliers, and (3)
refining the model based on the derived SHAP clustering characteristics. Our
approach mitigates overfitting and ensures robustness in handling data
distribution shifts. We evaluate our method on a comprehensive dataset
comprising energy consumption records of buildings, as well as two additional
datasets to assess the transferability of our approach to other domains,
regression, and classification problems. Our experiments demonstrate the
effectiveness of our approach in both task types, resulting in improved
predictive performance and interpretable model explanations.
- Abstract(参考訳): 本稿では、データ分散シフトの処理に焦点をあて、エネルギー消費予測モデルを強化するために、説明可能な人工知能(XAI)技術と適応学習を統合したアプローチを提案する。
SHAPクラスタリングを活用することで、モデル予測の解釈可能な説明を提供し、これらの知見を用いてモデルを適応的に洗練し、モデル複雑性と予測性能のバランスをとる。
本稿では,(1)モデル予測を説明するためのSHAP値の取得,(2)異なるパターンとアウトリーチを識別するためのSHAP値のクラスタリング,(3)派生したSHAPクラスタリング特性に基づいてモデルを精錬する3段階のプロセスを紹介する。
当社のアプローチは,データの分散シフト処理における過度な適合を緩和し,ロバスト性を確保する。
本手法は,建物のエネルギー消費記録を含む包括的データセットと,他の領域へのアプローチの転送可能性,回帰,分類問題を評価するための2つの追加データセットについて評価する。
両タスクタイプにおいて,本手法の有効性を実証し,予測性能と解釈可能なモデル説明の改善を図った。
関連論文リスト
- Composite Survival Analysis: Learning with Auxiliary Aggregated
Baselines and Survival Scores [0.0]
Survival Analysis (SA) は時間対イベントモデリングのデフォルト手法である。
本研究は,SAモデルのトレーニングと推論を,(1)集団の全体行動を捉えた集合的ベースラインハザードに分解し,(2)個別に分布した生存スコア,(2)そのメンバーの慣用的確率的ダイナミクスを,完全にパラメトリックな設定でモデル化することで改善する方法を示す。
論文 参考訳(メタデータ) (2023-12-10T11:13:22Z) - Aggregation Weighting of Federated Learning via Generalization Bound
Estimation [65.8630966842025]
フェデレートラーニング(FL)は通常、サンプル比率によって決定される重み付けアプローチを使用して、クライアントモデルパラメータを集約する。
上記の重み付け法を,各局所モデルの一般化境界を考慮した新しい戦略に置き換える。
論文 参考訳(メタデータ) (2023-11-10T08:50:28Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
ソースフリードメイン適応(source-free domain adapt, SFDA)は、ソースデータセットにアクセスすることなく、十分にトレーニングされたソースモデルを未学習のターゲットドメインに適応することを目的としている。
既存のSFDAメソッドは、ターゲットのトレーニングセット上で適用されたモデルを評価し、目に見えないが同一の分散テストセットからデータを無視する。
より一般化可能なSFDA法を開発するための整合正則化フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T07:45:53Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Better Modelling Out-of-Distribution Regression on Distributed Acoustic
Sensor Data Using Anchored Hidden State Mixup [0.7455546102930911]
トレーニングデータとテストデータの統計的分布が異なる状況への機械学習モデルの応用を一般化することは、複雑な問題であった。
本稿では,正規化の新たなペナルティを形成するために,多様体隠蔽状態の混合と観測類似性を利用したアンカー型回帰混合アルゴリズムを提案する。
提案手法の既存手法に対する一般化性能を広範囲に評価し,提案手法が最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2022-02-23T03:12:21Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - Conceptually Diverse Base Model Selection for Meta-Learners in Concept
Drifting Data Streams [3.0938904602244355]
本稿では,基礎となる部分空間間の主アングル(PA)を用いて計算したベースモデルの概念的類似性を推定するための新しいアプローチを提案する。
オンライン・トランスファー・ラーニング(TL)の文脈における共通アンサンブル・プルーニング・メトリクス、すなわち予測性能と相互情報(MI)を用いた閾値付けに対するこれらの手法の評価を行った。
その結果、概念的類似度閾値は計算オーバーヘッドを低減し、予測性能とMIを用いて閾値に匹敵する予測性能が得られることがわかった。
論文 参考訳(メタデータ) (2021-11-29T13:18:53Z) - Inducing Semantic Grouping of Latent Concepts for Explanations: An
Ante-Hoc Approach [18.170504027784183]
我々は,潜伏状態を利用してモデルの異なる部分を適切に修正することにより,より良い説明が得られ,予測性能が向上することを示した。
また,2つの異なる自己スーパービジョン技術を用いて,考察対象の自己スーパービジョンのタイプに関連する意味ある概念を抽出する手法を提案した。
論文 参考訳(メタデータ) (2021-08-25T07:09:57Z) - PSD2 Explainable AI Model for Credit Scoring [0.0]
本研究の目的は、信用リスクモデルの予測精度を向上させるための高度な分析手法の開発と試験である。
このプロジェクトは、銀行関連のデータベースに説明可能な機械学習モデルを適用することに焦点を当てている。
論文 参考訳(メタデータ) (2020-11-20T12:12:38Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。