論文の概要: Characterizing Disparity Between Edge Models and High-Accuracy Base Models for Vision Tasks
- arxiv url: http://arxiv.org/abs/2407.10016v1
- Date: Sat, 13 Jul 2024 22:05:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 19:48:19.214714
- Title: Characterizing Disparity Between Edge Models and High-Accuracy Base Models for Vision Tasks
- Title(参考訳): 視覚課題におけるエッジモデルと高精度ベースモデルとの差異の特徴
- Authors: Zhenyu Wang, Shahriar Nirjon,
- Abstract要約: XDELTAは、高精度ベースモデルと計算効率が良いが低精度エッジモデルの違いを説明する、説明可能な新しいAIツールである。
我々は、XDELTAのモデル不一致を説明する能力をテストするための総合的な評価を行い、120万以上の画像と24のモデルを使用し、6人の参加者による実世界の展開を評価する。
- 参考スコア(独自算出の注目度): 5.081175754775484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge devices, with their widely varying capabilities, support a diverse range of edge AI models. This raises the question: how does an edge model differ from a high-accuracy (base) model for the same task? We introduce XDELTA, a novel explainable AI tool that explains differences between a high-accuracy base model and a computationally efficient but lower-accuracy edge model. To achieve this, we propose a learning-based approach to characterize the model difference, named the DELTA network, which complements the feature representation capability of the edge network in a compact form. To construct DELTA, we propose a sparsity optimization framework that extracts the essence of the base model to ensure compactness and sufficient feature representation capability of DELTA, and implement a negative correlation learning approach to ensure it complements the edge model. We conduct a comprehensive evaluation to test XDELTA's ability to explain model discrepancies, using over 1.2 million images and 24 models, and assessing real-world deployments with six participants. XDELTA excels in explaining differences between base and edge models (arbitrary pairs as well as compressed base models) through geometric and concept-level analysis, proving effective in real-world applications.
- Abstract(参考訳): 幅広い機能を持つエッジデバイスは、さまざまなエッジAIモデルをサポートする。
エッジモデルは、同じタスクの高精度(ベース)モデルとどのように違うのか?
XDELTAは、高精度ベースモデルと計算効率が良いが低精度エッジモデルの違いを説明する、説明可能な新しいAIツールである。
そこで本研究では,エッジネットワークの特徴表現能力をコンパクトな形式で補完するDELTAネットワークという,モデル差分を特徴付ける学習ベースアプローチを提案する。
DELTAを構築するために, DELTAのコンパクト性と十分な特徴表現能力を確保するため, 基本モデルの本質を抽出し, エッジモデルを補完する負相関学習手法を提案する。
我々は、XDELTAのモデル不一致を説明する能力をテストするための総合的な評価を行い、120万以上の画像と24のモデルを使用し、6人の参加者による実世界の展開を評価する。
XDELTAは、幾何学的および概念レベルの分析を通じて、ベースモデルとエッジモデル(アービタリーペアと圧縮ベースモデル)の違いを説明し、現実世界の応用に有効であることを証明している。
関連論文リスト
- A Collaborative Ensemble Framework for CTR Prediction [73.59868761656317]
我々は、複数の異なるモデルを活用するための新しいフレームワーク、CETNet(Collaborative Ensemble Training Network)を提案する。
ナイーブなモデルスケーリングとは違って,私たちのアプローチは,共同学習による多様性とコラボレーションを重視しています。
当社のフレームワークは,Metaの3つのパブリックデータセットと大規模産業データセットに基づいて検証する。
論文 参考訳(メタデータ) (2024-11-20T20:38:56Z) - Enabling Small Models for Zero-Shot Classification through Model Label Learning [50.68074833512999]
モデルと機能の間のギャップを埋める新しいパラダイムであるモデルラベル学習(MLL)を導入する。
7つの実世界のデータセットの実験により、MLLの有効性と効率が検証された。
論文 参考訳(メタデータ) (2024-08-21T09:08:26Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Leveraging Model-based Trees as Interpretable Surrogate Models for Model
Distillation [3.5437916561263694]
代理モデルは、複雑で強力なブラックボックス機械学習モデルを振り返りに解釈する上で重要な役割を果たす。
本稿では,決定規則により特徴空間を解釈可能な領域に分割する代理モデルとしてモデルベースツリーを用いることに焦点を当てる。
4つのモデルベースツリーアルゴリズム(SLIM, GUIDE, MOB, CTree)を比較した。
論文 参考訳(メタデータ) (2023-10-04T19:06:52Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Accurate deep learning sub-grid scale models for large eddy simulations [0.0]
大型渦流シミュレーション(LES)のために開発されたサブグリッドスケール(SGS)乱流モデルについて述べる。
彼らの開発には、物理インフォームド・ロバストで効率的なDeep Learning (DL)アルゴリズムの定式化が必要だった。
2つの摩擦レイノルズ数における正準流路流れの直接シミュレーションによるデータの明示的なフィルタリングは、訓練と試験のための正確なデータを提供した。
論文 参考訳(メタデータ) (2023-07-19T15:30:06Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - Switchable Representation Learning Framework with Self-compatibility [50.48336074436792]
自己整合性(SFSC)を考慮した交換可能な表現学習フレームワークを提案する。
SFSCは1つのトレーニングプロセスを通じて、異なる能力を持つ一連の互換性のあるサブモデルを生成する。
SFSCは評価データセット上で最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-06-16T16:46:32Z) - PSD2 Explainable AI Model for Credit Scoring [0.0]
本研究の目的は、信用リスクモデルの予測精度を向上させるための高度な分析手法の開発と試験である。
このプロジェクトは、銀行関連のデータベースに説明可能な機械学習モデルを適用することに焦点を当てている。
論文 参考訳(メタデータ) (2020-11-20T12:12:38Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。