MRAC-RL: A Framework for On-Line Policy Adaptation Under Parametric
Model Uncertainty
- URL: http://arxiv.org/abs/2011.10562v1
- Date: Fri, 20 Nov 2020 18:55:53 GMT
- Title: MRAC-RL: A Framework for On-Line Policy Adaptation Under Parametric
Model Uncertainty
- Authors: Anubhav Guha and Anuradha Annaswamy
- Abstract summary: Reinforcement learning algorithms have been successfully used to develop control policies for dynamical systems.
We propose a set of novel MRAC algorithms applicable to a broad range of linear and nonlinear systems.
We demonstrate that the MRAC-RL approach improves upon state-of-the-art RL algorithms in developing control policies.
- Score: 0.34265828682659694
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) algorithms have been successfully used to develop
control policies for dynamical systems. For many such systems, these policies
are trained in a simulated environment. Due to discrepancies between the
simulated model and the true system dynamics, RL trained policies often fail to
generalize and adapt appropriately when deployed in the real-world environment.
Current research in bridging this sim-to-real gap has largely focused on
improvements in simulation design and on the development of improved and
specialized RL algorithms for robust control policy generation. In this paper
we apply principles from adaptive control and system identification to develop
the model-reference adaptive control & reinforcement learning (MRAC-RL)
framework. We propose a set of novel MRAC algorithms applicable to a broad
range of linear and nonlinear systems, and derive the associated control laws.
The MRAC-RL framework utilizes an inner-loop adaptive controller that allows a
simulation-trained outer-loop policy to adapt and operate effectively in a test
environment, even when parametric model uncertainty exists. We demonstrate that
the MRAC-RL approach improves upon state-of-the-art RL algorithms in developing
control policies that can be applied to systems with modeling errors.
Related papers
- Comparison of Model Predictive Control and Proximal Policy Optimization for a 1-DOF Helicopter System [0.7499722271664147]
This study conducts a comparative analysis of Model Predictive Control (MPC) and Proximal Policy Optimization (PPO), a Deep Reinforcement Learning (DRL) algorithm, applied to a Quanser Aero 2 system.
PPO excels in rise-time and adaptability, making it a promising approach for applications requiring rapid response and adaptability.
arXiv Detail & Related papers (2024-08-28T08:35:34Z) - Reinforcement Learning with Model Predictive Control for Highway Ramp Metering [14.389086937116582]
This work explores the synergy between model-based and learning-based strategies to enhance traffic flow management.
The control problem is formulated as an RL task by crafting a suitable stage cost function.
An MPC-based RL approach, which leverages the MPC optimal problem as a function approximation for the RL algorithm, is proposed to learn to efficiently control an on-ramp.
arXiv Detail & Related papers (2023-11-15T09:50:54Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - Efficient Learning of Voltage Control Strategies via Model-based Deep
Reinforcement Learning [9.936452412191326]
This article proposes a model-based deep reinforcement learning (DRL) method to design emergency control strategies for short-term voltage stability problems in power systems.
Recent advances show promising results in model-free DRL-based methods for power systems, but model-free methods suffer from poor sample efficiency and training time.
We propose a novel model-based-DRL framework where a deep neural network (DNN)-based dynamic surrogate model is utilized with the policy learning framework.
arXiv Detail & Related papers (2022-12-06T02:50:53Z) - A Unified Framework for Alternating Offline Model Training and Policy
Learning [62.19209005400561]
In offline model-based reinforcement learning, we learn a dynamic model from historically collected data, and utilize the learned model and fixed datasets for policy learning.
We develop an iterative offline MBRL framework, where we maximize a lower bound of the true expected return.
With the proposed unified model-policy learning framework, we achieve competitive performance on a wide range of continuous-control offline reinforcement learning datasets.
arXiv Detail & Related papers (2022-10-12T04:58:51Z) - Robust optimal well control using an adaptive multi-grid reinforcement
learning framework [0.0]
Reinforcement learning is a promising tool to solve robust optimal well control problems.
The proposed framework is demonstrated using a state-of-the-art, model-free policy-based RL algorithm.
Prominent gains in the computational efficiency is observed using the proposed framework saving around 60-70% of computational cost of its single fine-grid counterpart.
arXiv Detail & Related papers (2022-07-07T12:08:57Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
We propose a policy-search-for-model-predictive-control framework for MPC.
Specifically, we formulate the MPC as a parameterized controller, where the hard-to-optimize decision variables are represented as high-level policies.
Experiments show that our controller achieves robust and real-time control performance in both simulation and the real world.
arXiv Detail & Related papers (2021-12-07T17:39:24Z) - MOPO: Model-based Offline Policy Optimization [183.6449600580806]
offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data.
We show that an existing model-based RL algorithm already produces significant gains in the offline setting.
We propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics.
arXiv Detail & Related papers (2020-05-27T08:46:41Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.