Reinforcement Learning with Model Predictive Control for Highway Ramp Metering
- URL: http://arxiv.org/abs/2311.08820v3
- Date: Thu, 24 Oct 2024 09:01:51 GMT
- Title: Reinforcement Learning with Model Predictive Control for Highway Ramp Metering
- Authors: Filippo Airaldi, Bart De Schutter, Azita Dabiri,
- Abstract summary: This work explores the synergy between model-based and learning-based strategies to enhance traffic flow management.
The control problem is formulated as an RL task by crafting a suitable stage cost function.
An MPC-based RL approach, which leverages the MPC optimal problem as a function approximation for the RL algorithm, is proposed to learn to efficiently control an on-ramp.
- Score: 14.389086937116582
- License:
- Abstract: In the backdrop of an increasingly pressing need for effective urban and highway transportation systems, this work explores the synergy between model-based and learning-based strategies to enhance traffic flow management by use of an innovative approach to the problem of ramp metering control that embeds Reinforcement Learning (RL) techniques within the Model Predictive Control (MPC) framework. The control problem is formulated as an RL task by crafting a suitable stage cost function that is representative of the traffic conditions, variability in the control action, and violations of the constraint on the maximum number of vehicles in queue. An MPC-based RL approach, which leverages the MPC optimal problem as a function approximation for the RL algorithm, is proposed to learn to efficiently control an on-ramp and satisfy its constraints despite uncertainties in the system model and variable demands. Simulations are performed on a benchmark small-scale highway network to compare the proposed methodology against other state-of-the-art control approaches. Results show that, starting from an MPC controller that has an imprecise model and is poorly tuned, the proposed methodology is able to effectively learn to improve the control policy such that congestion in the network is reduced and constraints are satisfied, yielding an improved performance that is superior to the other controllers.
Related papers
- Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control [1.5361702135159845]
This paper introduces a knowledge-informed model-based residual reinforcement learning framework.
It integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics.
We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch.
arXiv Detail & Related papers (2024-08-30T16:16:57Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Data efficient reinforcement learning and adaptive optimal perimeter
control of network traffic dynamics [0.0]
This work proposes an integral reinforcement learning (IRL) based approach to learning the macroscopic traffic dynamics for adaptive optimal perimeter control.
To reduce the sampling complexity and use the available data more efficiently, the experience replay (ER) technique is introduced to the IRL algorithm.
The convergence of the IRL-based algorithms and the stability of the controlled traffic dynamics are proven via the Lyapunov theory.
arXiv Detail & Related papers (2022-09-13T04:28:49Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
This article contributes a streamlined methodology for vehicular microsimulation.
It discovers high performance control strategies with minimal manual design.
The study reveals numerous emergent behaviors resembling wave mitigation, traffic signaling, and ramp metering.
arXiv Detail & Related papers (2022-07-30T16:23:45Z) - Policy Search for Model Predictive Control with Application to Agile
Drone Flight [56.24908013905407]
We propose a policy-search-for-model-predictive-control framework for MPC.
Specifically, we formulate the MPC as a parameterized controller, where the hard-to-optimize decision variables are represented as high-level policies.
Experiments show that our controller achieves robust and real-time control performance in both simulation and the real world.
arXiv Detail & Related papers (2021-12-07T17:39:24Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - A Deep Reinforcement Learning Approach for Traffic Signal Control
Optimization [14.455497228170646]
Inefficient traffic signal control methods may cause numerous problems, such as traffic congestion and waste of energy.
This paper first proposes a multi-agent deep deterministic policy gradient (MADDPG) method by extending the actor-critic policy gradient algorithms.
arXiv Detail & Related papers (2021-07-13T14:11:04Z) - MRAC-RL: A Framework for On-Line Policy Adaptation Under Parametric
Model Uncertainty [0.34265828682659694]
Reinforcement learning algorithms have been successfully used to develop control policies for dynamical systems.
We propose a set of novel MRAC algorithms applicable to a broad range of linear and nonlinear systems.
We demonstrate that the MRAC-RL approach improves upon state-of-the-art RL algorithms in developing control policies.
arXiv Detail & Related papers (2020-11-20T18:55:53Z) - Combining Reinforcement Learning with Model Predictive Control for
On-Ramp Merging [10.480121529429631]
Two broad classes of techniques have been proposed to solve motion planning problems in autonomous driving: Model Predictive Control (MPC) and Reinforcement Learning (RL)
We first establish the strengths and weaknesses of state-of-the-art MPC and RL-based techniques through simulations.
We subsequently present an algorithm which blends the model-free RL agent with the MPC solution and show that it provides better trade-offs between all metrics -- passenger comfort, efficiency, crash rate and robustness.
arXiv Detail & Related papers (2020-11-17T07:42:11Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.