論文の概要: Assessment and Linear Programming under Fuzzy Conditions
- arxiv url: http://arxiv.org/abs/2011.10640v1
- Date: Fri, 20 Nov 2020 21:13:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 05:59:24.588650
- Title: Assessment and Linear Programming under Fuzzy Conditions
- Title(参考訳): ファジィ条件下における評価と線形計画法
- Authors: Michael Voskoglou
- Abstract要約: グループの平均性能を評価するためのファジィ手法を開発した。
ファジィ係数を用いた線形計画問題の解法を開発した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A new fuzzy method is developed using triangular/trapezoidal fuzzy numbers
for evaluating a group's mean performance, when qualitative grades instead of
numerical scores are used for assessing its members' individual performance.
Also, a new technique is developed for solving Linear Programming problems with
fuzzy coefficients and everyday life applications are presented to illustrate
our results.
- Abstract(参考訳): メンバの個性評価に数点ではなく質的階数を用いた場合, グループの平均パフォーマンスを評価するために, 三角・三角ファジィ数を用いた新しいファジィ法を開発した。
また, ファジィ係数を用いた線形計画問題を解くための新しい手法が開発され, 日常的応用が提案されている。
関連論文リスト
- Gradient Descent Efficiency Index [0.0]
本研究では,各イテレーションの有効性を定量化するために,新しい効率指標Ekを導入する。
提案した測定基準は、誤差の相対的変化と繰り返し間の損失関数の安定性の両方を考慮に入れている。
Ekは、機械学習アプリケーションにおける最適化アルゴリズムの選択とチューニングにおいて、より詳細な決定を導く可能性がある。
論文 参考訳(メタデータ) (2024-10-25T10:22:22Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - A naive aggregation algorithm for improving generalization in a class of learning problems [0.0]
本稿では,エキスパート・アドバイス・セッティングを用いた一般的な学習問題に対するナイーブ・アグリゲーション・アルゴリズムを提案する。
特に,高次元非線形関数をモデル化するための点推定の学習問題について考察する。
論文 参考訳(メタデータ) (2024-09-06T15:34:17Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
本研究は,非教師付き次元減少性能指標を初めて導入することを目的としている。
その実現可能性をテストするために、この測定基準は最もよく使われる次元削減アルゴリズムの性能を評価するために用いられている。
新しいパラメータ化問題インスタンスジェネレータが関数ジェネレータの形式で構築されている。
論文 参考訳(メタデータ) (2023-03-17T11:59:33Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
メトリクスのコーパスは、長い尾の分布で学習するアルゴリズムの正確性、堅牢性、およびバウンダリを測定するために設計されている。
ベンチマークに基づいて,CIFAR10およびCIFAR100データセット上での既存手法の性能を再評価する。
論文 参考訳(メタデータ) (2023-02-03T02:40:54Z) - Benchmarking Node Outlier Detection on Graphs [90.29966986023403]
グラフの外れ値検出は、多くのアプリケーションにおいて、新しいが重要な機械学習タスクである。
UNODと呼ばれるグラフに対して、最初の包括的教師なしノード外乱検出ベンチマークを示す。
論文 参考訳(メタデータ) (2022-06-21T01:46:38Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
クラスインクリメンタル学習(CIL)アルゴリズムは、インクリメンタルに到着したデータから新しいオブジェクトクラスを継続的に学習することを目的としている。
表現学習における様々な評価プロトコルを用いて,CILアルゴリズムによって訓練されたニューラルネットワークモデルを実験的に解析する。
論文 参考訳(メタデータ) (2022-06-16T11:44:11Z) - Diversity Enhanced Active Learning with Strictly Proper Scoring Rules [4.81450893955064]
テキスト分類のための能動学習(AL)のための獲得関数について検討する。
我々は、期待損失削減法(ELR)を、ログ確率や負平均二乗誤差などの(厳密な)スコアの増加を推定するために変換する。
BEMPSを用いた平均二乗誤差とログ確率を用いることで、ロバストな取得関数が得られることを示す。
論文 参考訳(メタデータ) (2021-10-27T05:02:11Z) - Effective Evaluation of Deep Active Learning on Image Classification
Tasks [10.27095298129151]
画像分類の文脈において,最先端の能動学習アルゴリズムを統一的に実装する。
正の面では、AL手法はデータ拡張によるRSに比べてラベル効率が2倍から4倍高いことを示す。
論文 参考訳(メタデータ) (2021-06-16T23:29:39Z) - Logistic Q-Learning [87.00813469969167]
MDPにおける最適制御の正規化線形プログラミング定式化から導いた新しい強化学習アルゴリズムを提案する。
提案アルゴリズムの主な特徴は,広範に使用されているベルマン誤差の代わりとして理論的に音声として機能する,政策評価のための凸損失関数である。
論文 参考訳(メタデータ) (2020-10-21T17:14:31Z) - Evaluating the Performance of Reinforcement Learning Algorithms [30.075897642052126]
性能評価は、強化学習におけるアルゴリズムの進歩の定量化に重要である。
最近の分析では、報告された結果が矛盾することが多く、複製が困難であることが示されている。
本研究では,1つの環境と環境にまたがって集約された場合の両方で,信頼性の高い性能測定を行う強化学習アルゴリズムの総合評価手法を提案する。
論文 参考訳(メタデータ) (2020-06-30T16:52:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。