論文の概要: Emergent Road Rules In Multi-Agent Driving Environments
- arxiv url: http://arxiv.org/abs/2011.10753v2
- Date: Wed, 17 Mar 2021 07:29:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 23:05:21.077860
- Title: Emergent Road Rules In Multi-Agent Driving Environments
- Title(参考訳): マルチエージェント運転環境における緊急道路ルール
- Authors: Avik Pal, Jonah Philion, Yuan-Hong Liao and Sanja Fidler
- Abstract要約: 運転環境の要素が道路ルールの出現の原因となるかを分析する。
2つの重要な要因が雑音知覚とエージェントの空間密度であることがわかった。
我々の結果は、世界中の国々が安全で効率的な運転で合意した社会道路規則を実証的に支持する。
- 参考スコア(独自算出の注目度): 84.82583370858391
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For autonomous vehicles to safely share the road with human drivers,
autonomous vehicles must abide by specific "road rules" that human drivers have
agreed to follow. "Road rules" include rules that drivers are required to
follow by law -- such as the requirement that vehicles stop at red lights -- as
well as more subtle social rules -- such as the implicit designation of fast
lanes on the highway. In this paper, we provide empirical evidence that
suggests that -- instead of hard-coding road rules into self-driving algorithms
-- a scalable alternative may be to design multi-agent environments in which
road rules emerge as optimal solutions to the problem of maximizing traffic
flow. We analyze what ingredients in driving environments cause the emergence
of these road rules and find that two crucial factors are noisy perception and
agents' spatial density. We provide qualitative and quantitative evidence of
the emergence of seven social driving behaviors, ranging from obeying traffic
signals to following lanes, all of which emerge from training agents to drive
quickly to destinations without colliding. Our results add empirical support
for the social road rules that countries worldwide have agreed on for safe,
efficient driving.
- Abstract(参考訳): 自動運転車が人間のドライバーと安全に道路を共有するためには、自動運転車は人間のドライバーが同意した特定の「道路規則」に従わなければならない。
"Road rules" include rules that drivers are required to follow by law -- such as the requirement that vehicles stop at red lights -- as well as more subtle social rules -- such as the implicit designation of fast lanes on the highway. In this paper, we provide empirical evidence that suggests that -- instead of hard-coding road rules into self-driving algorithms -- a scalable alternative may be to design multi-agent environments in which road rules emerge as optimal solutions to the problem of maximizing traffic flow.
運転環境の成分が道路規則の出現を引き起こす要因を分析し,騒音の知覚とエージェントの空間密度の2つの重要な要因を見いだした。
交通信号に従うことから車線に続くことまで、7つの社会的運転行動の出現の質的かつ定量的な証拠を提供する。
我々の結果は、世界中の国々が安全で効率的な運転で合意した社会道路規則を実証的に支持する。
関連論文リスト
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding [2.9685635948300004]
本稿では,自律型エージェントが知覚できる情報を中心に,強化学習エージェント(RL)のための新しい状態表現を提案する。
我々の発見は、より堅牢で信頼性の高い自律ナビゲーション戦略の道を開いた。
論文 参考訳(メタデータ) (2024-07-05T08:34:49Z) - RACER: Epistemic Risk-Sensitive RL Enables Fast Driving with Fewer Crashes [57.319845580050924]
本稿では,リスク感応制御と適応行動空間のカリキュラムを組み合わせた強化学習フレームワークを提案する。
提案アルゴリズムは,現実世界のオフロード運転タスクに対して,高速なポリシーを学習可能であることを示す。
論文 参考訳(メタデータ) (2024-05-07T23:32:36Z) - Robust Driving Policy Learning with Guided Meta Reinforcement Learning [49.860391298275616]
本稿では,ソーシャルカーの多種多様な運転方針を一つのメタ政治として訓練する効率的な方法を提案する。
ソーシャルカーのインタラクションに基づく報酬関数をランダム化することにより、多様な目的を生み出し、メタ政治を効率的に訓練することができる。
本研究では,社会自動車が学習メタ政治によって制御される環境を利用して,エゴ自動車の運転方針の堅牢性を高めるためのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-07-19T17:42:36Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Quantification of Actual Road User Behavior on the Basis of Given
Traffic Rules [4.731404257629232]
本研究では,人間の運転データから規則適合度の分布を導出する手法を提案する。
提案手法は,オープンモーションデータセットと安全距離および速度制限ルールを用いて実証する。
論文 参考訳(メタデータ) (2022-02-07T09:14:53Z) - Integrated Decision and Control at Multi-Lane Intersections with Mixed
Traffic Flow [6.233422723925688]
本稿では,混在交通流を伴う複雑な交差点を扱うための学習に基づくアルゴリズムを提案する。
まず、学習過程における緑と赤の異なる速度モデルについて検討し、有限状態マシンを用いて異なるモードの光変換を扱う。
次に, 車両, 信号機, 歩行者, 自転車にそれぞれ異なる種類の距離制約を設計し, 制約された最適制御問題をフォーミュレートする。
論文 参考訳(メタデータ) (2021-08-30T07:55:32Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - iTV: Inferring Traffic Violation-Prone Locations with Vehicle
Trajectories and Road Environment Data [12.715237421592624]
本研究では,大規模車両軌跡データと環境データに基づいて,都市部における交通違反発生箇所を推定する枠組みを提案する。
提案手法の有効性を評価するため,中国2都市から収集した大規模・現実世界の車両軌道について広範な研究を行った。
論文 参考訳(メタデータ) (2020-05-09T08:52:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。