論文の概要: Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding
- arxiv url: http://arxiv.org/abs/2407.04343v1
- Date: Fri, 5 Jul 2024 08:34:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-08 14:09:46.660043
- Title: Enhancing Safety for Autonomous Agents in Partly Concealed Urban Traffic Environments Through Representation-Based Shielding
- Title(参考訳): 表現型遮蔽による都市交通環境の自律型エージェントの安全性向上
- Authors: Pierre Haritz, David Wanke, Thomas Liebig,
- Abstract要約: 本稿では,自律型エージェントが知覚できる情報を中心に,強化学習エージェント(RL)のための新しい状態表現を提案する。
我々の発見は、より堅牢で信頼性の高い自律ナビゲーション戦略の道を開いた。
- 参考スコア(独自算出の注目度): 2.9685635948300004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Navigating unsignalized intersections in urban environments poses a complex challenge for self-driving vehicles, where issues such as view obstructions, unpredictable pedestrian crossings, and diverse traffic participants demand a great focus on crash prevention. In this paper, we propose a novel state representation for Reinforcement Learning (RL) agents centered around the information perceivable by an autonomous agent, enabling the safe navigation of previously uncharted road maps. Our approach surpasses several baseline models by a sig nificant margin in terms of safety and energy consumption metrics. These improvements are achieved while maintaining a competitive average travel speed. Our findings pave the way for more robust and reliable autonomous navigation strategies, promising safer and more efficient urban traffic environments.
- Abstract(参考訳): 都市環境における信号のない交差点の航行は、視界妨害、予測不可能な歩行者横断、多様な交通参加者が衝突防止に多大な注力を求めるなど、自動運転車にとって複雑な課題となる。
本稿では、自律エージェントが知覚できる情報を中心にしたRL(Reinforcement Learning)エージェントの状態表現を提案する。
提案手法は,安全性とエネルギー消費の指標から,いくつかのベースラインモデルに比例する。
これらの改善は、競争平均走行速度を維持しながら達成される。
我々の発見は、より堅牢で信頼性の高い自律航法戦略、より安全で効率的な都市交通環境を実現するための道を開いた。
関連論文リスト
- GPT-Augmented Reinforcement Learning with Intelligent Control for Vehicle Dispatching [82.19172267487998]
GARLIC: GPT拡張強化学習のフレームワーク。
本稿では,GPT強化強化学習とインテリジェント制御のフレームワークであるGARLICについて紹介する。
論文 参考訳(メタデータ) (2024-08-19T08:23:38Z) - Agent-Agnostic Centralized Training for Decentralized Multi-Agent Cooperative Driving [17.659812774579756]
本研究では,自律走行車における分散型協調運転ポリシーを学習する非対称アクター・批判モデルを提案する。
マスキングを用いたアテンションニューラルネットワークを用いることで,実世界の交通動態と部分観測可能性の効率よく管理できる。
論文 参考訳(メタデータ) (2024-03-18T16:13:02Z) - Reinforcement Learning with Latent State Inference for Autonomous On-ramp Merging under Observation Delay [6.0111084468944]
遅延状態推論・安全制御(L3IS)エージェントを用いたレーンキーピング・レーンチェンジについて紹介する。
L3ISは、周囲の車両の意図や運転スタイルに関する包括的な知識を必要とせずに、オンランプのマージ作業を安全に行うように設計されている。
本稿では,観測遅延を考慮に入れたAL3ISというエージェントを改良し,実環境においてより堅牢な決定を行えるようにした。
論文 参考訳(メタデータ) (2024-03-18T15:02:46Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - iPLAN: Intent-Aware Planning in Heterogeneous Traffic via Distributed
Multi-Agent Reinforcement Learning [57.24340061741223]
本稿では,高密度および不均一な交通シナリオにおける軌跡や意図を予測できる分散マルチエージェント強化学習(MARL)アルゴリズムを提案する。
インテント対応プランニングのアプローチであるiPLANにより、エージェントは近くのドライバーの意図をローカルな観察からのみ推測できる。
論文 参考訳(メタデータ) (2023-06-09T20:12:02Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - Towards Robust On-Ramp Merging via Augmented Multimodal Reinforcement
Learning [9.48157144651867]
本稿では,CAVのマルチモーダル強化学習によるロバスト・オン・ランプ・マージに対する新しいアプローチを提案する。
具体的には、運転安全性、快適運転行動、交通効率を考慮に入れ、マークフ決定プロセス(MDP)としてオンランプマージ問題を定式化する。
信頼性の高い統合操作を実現するため,BSMと監視画像を同時に活用してマルチモーダル観測を行う。
論文 参考訳(メタデータ) (2022-07-21T16:34:57Z) - Explainable, automated urban interventions to improve pedestrian and
vehicle safety [0.8620335948752805]
本稿では,歩行者や車両の安全性にアプローチするために,公共データソース,大規模街路画像,コンピュータビジョン技術を組み合わせる。
このパイプラインに関わるステップには、各都市シーンのハザード指標を決定するために、残留畳み込みニューラルネットワークの適応とトレーニングが含まれる。
この計算手法の結果は、都市全体の危険レベルの詳細なマップであり、歩行者と車両の安全性を同時に改善する可能性がある。
論文 参考訳(メタデータ) (2021-10-22T09:17:39Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
本稿では,高密度交通シナリオにおける対話型モーションプランニングのための新しい枠組みを提案する。
我々は,他車両の協調性に関する国際的ガイダンスを提供するインタラクション対応政策であるDeep Reinforcement Learning (RL) を通じて学習することを提案する。
学習されたポリシーは、ローカル最適化ベースのプランナーを推論し、対話的な振る舞いで誘導し、他の車両が収まらない場合に安全を維持しながら、密集したトラフィックに積極的にマージする。
論文 参考訳(メタデータ) (2021-07-09T16:43:12Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - Emergent Road Rules In Multi-Agent Driving Environments [84.82583370858391]
運転環境の要素が道路ルールの出現の原因となるかを分析する。
2つの重要な要因が雑音知覚とエージェントの空間密度であることがわかった。
我々の結果は、世界中の国々が安全で効率的な運転で合意した社会道路規則を実証的に支持する。
論文 参考訳(メタデータ) (2020-11-21T09:43:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。