Spatially Correlated Patterns in Adversarial Images
- URL: http://arxiv.org/abs/2011.10794v1
- Date: Sat, 21 Nov 2020 14:06:59 GMT
- Title: Spatially Correlated Patterns in Adversarial Images
- Authors: Nandish Chattopadhyay, Lionell Yip En Zhi, Bryan Tan Bing Xing and
Anupam Chattopadhyay
- Abstract summary: Adversarial attacks have proved to be the major impediment in the progress on research towards reliable machine learning solutions.
We propose a framework for segregating and isolating regions within an input image which are critical towards either classification (during inference), or adversarial vulnerability or both.
- Score: 5.069312274160184
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial attacks have proved to be the major impediment in the progress on
research towards reliable machine learning solutions. Carefully crafted
perturbations, imperceptible to human vision, can be added to images to force
misclassification by an otherwise high performing neural network. To have a
better understanding of the key contributors of such structured attacks, we
searched for and studied spatially co-located patterns in the distribution of
pixels in the input space. In this paper, we propose a framework for
segregating and isolating regions within an input image which are particularly
critical towards either classification (during inference), or adversarial
vulnerability or both. We assert that during inference, the trained model looks
at a specific region in the image, which we call Region of Importance (RoI);
and the attacker looks at a region to alter/modify, which we call Region of
Attack (RoA). The success of this approach could also be used to design a
post-hoc adversarial defence method, as illustrated by our observations. This
uses the notion of blocking out (we call neutralizing) that region of the image
which is highly vulnerable to adversarial attacks but is not important for the
task of classification. We establish the theoretical setup for formalising the
process of segregation, isolation and neutralization and substantiate it
through empirical analysis on standard benchmarking datasets. The findings
strongly indicate that mapping features into the input space preserves the
significant patterns typically observed in the feature-space while adding major
interpretability and therefore simplifies potential defensive mechanisms.
Related papers
- Anomaly Unveiled: Securing Image Classification against Adversarial
Patch Attacks [3.6275442368775512]
Adversarial patch attacks pose a significant threat to the practical deployment of deep learning systems.
In this paper, we investigate the behavior of adversarial patches as anomalies within the distribution of image information.
Our proposed defense mechanism utilizes a clustering-based technique called DBSCAN to isolate anomalous image segments.
arXiv Detail & Related papers (2024-02-09T08:52:47Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
We propose a perception-aware fusion framework to promote segmentation robustness in adversarial scenes.
We show that our scheme substantially enhances the robustness, with gains of 15.3% mIOU, compared with advanced competitors.
arXiv Detail & Related papers (2023-08-08T01:55:44Z) - Uncertainty-based Detection of Adversarial Attacks in Semantic
Segmentation [16.109860499330562]
We introduce an uncertainty-based approach for the detection of adversarial attacks in semantic segmentation.
We demonstrate the ability of our approach to detect perturbed images across multiple types of adversarial attacks.
arXiv Detail & Related papers (2023-05-22T08:36:35Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
Vulnerability of deep neural networks to adversarial perturbations has been widely perceived in the computer vision community.
Current algorithms typically detect adversarial patterns through discriminative decomposition for natural and adversarial data.
We propose a discriminative detector relying on a spatial-frequency Krawtchouk decomposition.
arXiv Detail & Related papers (2023-05-18T10:18:59Z) - Mitigating Urban-Rural Disparities in Contrastive Representation Learning with Satellite Imagery [19.93324644519412]
We consider the risk of urban-rural disparities in identification of land-cover features.
We propose fair dense representation with contrastive learning (FairDCL) as a method for de-biasing the multi-level latent space of convolution neural network models.
The obtained image representation mitigates downstream urban-rural prediction disparities and outperforms state-of-the-art baselines on real-world satellite images.
arXiv Detail & Related papers (2022-11-16T04:59:46Z) - Robustness in Deep Learning for Computer Vision: Mind the gap? [13.576376492050185]
We identify, analyze, and summarize current definitions and progress towards non-adversarial robustness in deep learning for computer vision.
We find that this area of research has received disproportionately little attention relative to adversarial machine learning.
arXiv Detail & Related papers (2021-12-01T16:42:38Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z) - Adversarial Robustness with Non-uniform Perturbations [3.804240190982695]
Prior work mainly focus on crafting adversarial examples with small uniform norm-bounded perturbations across features to maintain the requirement of imperceptibility.
Our approach can be adapted to other domains where non-uniform perturbations more accurately represent realistic adversarial examples.
arXiv Detail & Related papers (2021-02-24T00:54:43Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
We propose a new probabilistic adversarial detector motivated by a recently introduced non-robust feature.
In this paper, we consider the non-robust features as a common property of adversarial examples, and we deduce it is possible to find a cluster in representation space corresponding to the property.
This idea leads us to probability estimate distribution of adversarial representations in a separate cluster, and leverage the distribution for a likelihood based adversarial detector.
arXiv Detail & Related papers (2020-12-07T07:21:18Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.