論文の概要: Rank-smoothed Pairwise Learning In Perceptual Quality Assessment
- arxiv url: http://arxiv.org/abs/2011.10893v1
- Date: Sat, 21 Nov 2020 23:33:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 23:06:09.433487
- Title: Rank-smoothed Pairwise Learning In Perceptual Quality Assessment
- Title(参考訳): 知覚的品質評価におけるランク・スムースドペアワイズ学習
- Authors: Hossein Talebi, Ehsan Amid, Peyman Milanfar, and Manfred K. Warmuth
- Abstract要約: 階層的確率でペアワイドな経験的確率を正規化することで、より信頼性の高いトレーニング損失がもたらされることを示す。
画像品質評価モデルのトレーニングにおいて,ランクスムースな損失が人間の嗜好を予測する精度を常に向上させることを示す。
- 参考スコア(独自算出の注目度): 26.599014990168836
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conducting pairwise comparisons is a widely used approach in curating human
perceptual preference data. Typically raters are instructed to make their
choices according to a specific set of rules that address certain dimensions of
image quality and aesthetics. The outcome of this process is a dataset of
sampled image pairs with their associated empirical preference probabilities.
Training a model on these pairwise preferences is a common deep learning
approach. However, optimizing by gradient descent through mini-batch learning
means that the "global" ranking of the images is not explicitly taken into
account. In other words, each step of the gradient descent relies only on a
limited number of pairwise comparisons. In this work, we demonstrate that
regularizing the pairwise empirical probabilities with aggregated rankwise
probabilities leads to a more reliable training loss. We show that training a
deep image quality assessment model with our rank-smoothed loss consistently
improves the accuracy of predicting human preferences.
- Abstract(参考訳): ペアワイズ比較を行うことは、人間の知覚的嗜好データをキュレートするのに広く用いられるアプローチである。
通常、ラッカーは画像の品質と美学の特定の次元に対処する特定の規則に従って選択するように指示される。
このプロセスの結果は、サンプル画像対とその関連する経験的嗜好確率のデータセットである。
これらのペアによる選好に基づいてモデルをトレーニングすることは、一般的なディープラーニングアプローチである。
しかし、最小バッチ学習による勾配勾配勾配の最適化は、画像の「グローバル」ランキングを明示的に考慮しないことを意味する。
言い換えると、勾配降下の各ステップは、限られた数の対比較のみに依存する。
本研究は,階層的確率によるペアワイド経験確率の正規化が,より信頼性の高いトレーニング損失をもたらすことを示す。
画像品質評価モデルのトレーニングにおいて,ランクスムースな損失が人間の嗜好を予測する精度を常に向上させることを示す。
関連論文リスト
- Beyond MOS: Subjective Image Quality Score Preprocessing Method Based on Perceptual Similarity [2.290956583394892]
ITU-R BT.500、ITU-T P.910、ITU-T P.913は、当初の世論点をクリアするために標準化されている。
PSPは画像間の知覚的類似性を利用して、より注釈の少ないシナリオにおける主観的バイアスを軽減する。
論文 参考訳(メタデータ) (2024-04-30T16:01:14Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
我々は,クラスが等しくないことを実験的に証明し,様々なデータセットにまたがる画像分類モデルにおいて,公平性の問題が顕著であることを示した。
以上の結果から,モデルでは認識が困難であるクラスに対して,予測バイアスが大きくなる傾向が示唆された。
データ拡張および表現学習アルゴリズムは、画像分類のある程度の公平性を促進することにより、全体的なパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2024-02-28T07:54:50Z) - Content-Diverse Comparisons improve IQA [23.523537785599913]
画像品質評価(IQA)は人間にとって自然な作業であり、しばしば簡単な作業となるが、タスクの効果的な自動化は依然として困難である。
ディープラーニングコミュニティの最近のメトリクスは、トレーニング中のイメージペアを比較して、PSNRやSSIMといった従来のメトリクスを改善するのが一般的です。
これにより、トレーニング中にモデルが露出する画像ペアの多様性と数を制限する。
本稿では、これらの比較とコンテンツ多様性の強化に努め、まず、比較制約を緩和し、画像のペアを異なるコンテンツと比較する。
論文 参考訳(メタデータ) (2022-11-09T21:53:13Z) - Understanding the Generalization of Adam in Learning Neural Networks
with Proper Regularization [118.50301177912381]
我々は,重力減衰グローバリゼーションにおいても,目的の異なる解に確実に異なる誤差で収束できることを示す。
凸と重み減衰正則化を用いると、Adamを含む任意の最適化アルゴリズムは同じ解に収束することを示す。
論文 参考訳(メタデータ) (2021-08-25T17:58:21Z) - Provable Guarantees for Self-Supervised Deep Learning with Spectral
Contrastive Loss [72.62029620566925]
自己教師型学習の最近の研究は、対照的な学習パラダイムを頼りに、最先端の技術の進歩を遂げている。
我々の研究は、正の対の条件的独立性を仮定することなく、対照的な学習を分析する。
本稿では,人口増分グラフ上でスペクトル分解を行う損失を提案し,コントラスト学習目的として簡潔に記述することができる。
論文 参考訳(メタデータ) (2021-06-08T07:41:02Z) - Deep Matching Prior: Test-Time Optimization for Dense Correspondence [37.492074298574664]
入力対のイメージ上で、トレーニングされていないマッチングネットワークを最適化することで、画像ペア固有の先行情報をキャプチャできることを示す。
実験により、私たちのフレームワークはDeep Matching Prior (DMP)と呼ばれ、最新の学習ベースの手法に対して競争力があり、性能も優れています。
論文 参考訳(メタデータ) (2021-06-06T10:56:01Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
暗黙のフィードバックから学ぶことは、一流問題の難しい性質のために困難です。
ほとんどの従来の方法は、一級問題に対処するためにペアワイズランキングアプローチとネガティブサンプラーを使用します。
本論文では,ポイントワイズと同等の収束速度を実現する学習対ランクアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-11T03:38:16Z) - An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human
Pose Estimation [80.02124918255059]
半教師付き学習は、ラベルなし画像の探索によってモデルの精度を高めることを目的としている。
私たちは相互に教え合うために2つのネットワークを学びます。
各ネットワーク内の容易なイメージに関するより信頼性の高い予測は、他のネットワークに対応するハードイメージについて学ぶように教えるために使用される。
論文 参考訳(メタデータ) (2020-11-25T03:29:52Z) - A Flatter Loss for Bias Mitigation in Cross-dataset Facial Age
Estimation [37.107335288543624]
年齢推定ベンチマークのためのクロスデータセットプロトコルを提唱する。
本稿では,ニューラルネットワークのトレーニングに有効な新しい損失関数を提案する。
論文 参考訳(メタデータ) (2020-10-20T15:22:29Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。