Primal-dual Learning for the Model-free Risk-constrained Linear
Quadratic Regulator
- URL: http://arxiv.org/abs/2011.10931v4
- Date: Sun, 30 May 2021 14:11:51 GMT
- Title: Primal-dual Learning for the Model-free Risk-constrained Linear
Quadratic Regulator
- Authors: Feiran Zhao, Keyou You
- Abstract summary: Risk-aware control, though with promise to tackle unexpected events, requires a known exact dynamical model.
We propose a model framework to learn a risk-aware controller with a focus on the linear system.
- Score: 0.8629912408966145
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Risk-aware control, though with promise to tackle unexpected events, requires
a known exact dynamical model. In this work, we propose a model-free framework
to learn a risk-aware controller with a focus on the linear system. We
formulate it as a discrete-time infinite-horizon LQR problem with a state
predictive variance constraint. To solve it, we parameterize the policy with a
feedback gain pair and leverage primal-dual methods to optimize it by solely
using data. We first study the optimization landscape of the Lagrangian
function and establish the strong duality in spite of its non-convex nature.
Alongside, we find that the Lagrangian function enjoys an important local
gradient dominance property, which is then exploited to develop a convergent
random search algorithm to learn the dual function. Furthermore, we propose a
primal-dual algorithm with global convergence to learn the optimal
policy-multiplier pair. Finally, we validate our results via simulations.
Related papers
- Recursive Gaussian Process State Space Model [4.572915072234487]
We propose a new online GPSSM method with adaptive capabilities for both operating domains and GP hyper parameters.
Online selection algorithm for inducing points is developed based on informative criteria to achieve lightweight learning.
Comprehensive evaluations on both synthetic and real-world datasets demonstrate the superior accuracy, computational efficiency, and adaptability of our method.
arXiv Detail & Related papers (2024-11-22T02:22:59Z) - Accelerated zero-order SGD under high-order smoothness and overparameterized regime [79.85163929026146]
We present a novel gradient-free algorithm to solve convex optimization problems.
Such problems are encountered in medicine, physics, and machine learning.
We provide convergence guarantees for the proposed algorithm under both types of noise.
arXiv Detail & Related papers (2024-11-21T10:26:17Z) - Trust-Region Sequential Quadratic Programming for Stochastic Optimization with Random Models [57.52124921268249]
We propose a Trust Sequential Quadratic Programming method to find both first and second-order stationary points.
To converge to first-order stationary points, our method computes a gradient step in each iteration defined by minimizing a approximation of the objective subject.
To converge to second-order stationary points, our method additionally computes an eigen step to explore the negative curvature the reduced Hessian matrix.
arXiv Detail & Related papers (2024-09-24T04:39:47Z) - One-Shot Safety Alignment for Large Language Models via Optimal Dualization [64.52223677468861]
This paper presents a perspective of dualization that reduces constrained alignment to an equivalent unconstrained alignment problem.
We do so by pre-optimizing a smooth and convex dual function that has a closed form.
Our strategy leads to two practical algorithms in model-based and preference-based settings.
arXiv Detail & Related papers (2024-05-29T22:12:52Z) - Double Duality: Variational Primal-Dual Policy Optimization for
Constrained Reinforcement Learning [132.7040981721302]
We study the Constrained Convex Decision Process (MDP), where the goal is to minimize a convex functional of the visitation measure.
Design algorithms for a constrained convex MDP faces several challenges, including handling the large state space.
arXiv Detail & Related papers (2024-02-16T16:35:18Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Convergence and sample complexity of natural policy gradient primal-dual methods for constrained MDPs [21.347689976296834]
We employ the natural policy gradient method to solve the discounted optimal optimal rate problem.
We also provide convergence and finite-sample guarantees for two sample-based NPG-PD algorithms.
arXiv Detail & Related papers (2022-06-06T04:28:04Z) - A Stochastic Composite Augmented Lagrangian Method For Reinforcement
Learning [9.204659134755795]
We consider the linear programming (LP) formulation for deep reinforcement learning.
The augmented Lagrangian method suffers the double-sampling obstacle in solving the LP.
A deep parameterized augment Lagrangian method is proposed.
arXiv Detail & Related papers (2021-05-20T13:08:06Z) - Policy Gradient Methods for the Noisy Linear Quadratic Regulator over a
Finite Horizon [3.867363075280544]
We explore reinforcement learning methods for finding the optimal policy in the linear quadratic regulator (LQR) problem.
We produce a global linear convergence guarantee for the setting of finite time horizon and state dynamics under weak assumptions.
We show results for the case where we assume a model for the underlying dynamics and where we apply the method to the data directly.
arXiv Detail & Related papers (2020-11-20T09:51:49Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.