論文の概要: GENER: A Parallel Layer Deep Learning Network To Detect Gene-Gene
Interactions From Gene Expression Data
- arxiv url: http://arxiv.org/abs/2310.03611v2
- Date: Fri, 6 Oct 2023 11:53:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-09 10:26:44.288823
- Title: GENER: A Parallel Layer Deep Learning Network To Detect Gene-Gene
Interactions From Gene Expression Data
- Title(参考訳): GeneER:遺伝子発現データから遺伝子間相互作用を検出する並列層ディープラーニングネットワーク
- Authors: Ahmed Fakhry, Raneem Khafagy, Adriaan-Alexander Ludl
- Abstract要約: 本稿では,遺伝子発現データを用いた遺伝子関係の同定専用に設計された並列層深層学習ネットワークを提案する。
本モデルでは,BioGRIDとDREAM5の組み合わせによる平均AUROCスコア0.834を達成し,遺伝子間相互作用を予測する競合手法よりも優れていた。
- 参考スコア(独自算出の注目度): 0.7660368798066375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Detecting and discovering new gene interactions based on known gene
expressions and gene interaction data presents a significant challenge. Various
statistical and deep learning methods have attempted to tackle this challenge
by leveraging the topological structure of gene interactions and gene
expression patterns to predict novel gene interactions. In contrast, some
approaches have focused exclusively on utilizing gene expression profiles. In
this context, we introduce GENER, a parallel-layer deep learning network
designed exclusively for the identification of gene-gene relationships using
gene expression data. We conducted two training experiments and compared the
performance of our network with that of existing statistical and deep learning
approaches. Notably, our model achieved an average AUROC score of 0.834 on the
combined BioGRID&DREAM5 dataset, outperforming competing methods in predicting
gene-gene interactions.
- Abstract(参考訳): 既知の遺伝子発現と遺伝子相互作用データに基づく新しい遺伝子相互作用の検出と発見は重要な課題である。
様々な統計的・深層学習手法が、遺伝子相互作用のトポロジー構造と遺伝子発現パターンを利用して、新しい遺伝子相互作用を予測することで、この課題に挑戦しようと試みている。
対照的に、いくつかのアプローチは遺伝子発現プロファイルの活用に特化している。
本稿では,遺伝子発現データを用いた遺伝子関係の同定専用に設計された並列層深層学習ネットワークGENERを紹介する。
我々は2つのトレーニング実験を行い、既存の統計的および深層学習手法とネットワークの性能を比較した。
特に,BioGRIDとDREAM5の組み合わせによるAUROC平均スコア0.834を達成し,遺伝子間相互作用を予測する競合手法よりも優れていた。
関連論文リスト
- Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - FGBERT: Function-Driven Pre-trained Gene Language Model for Metagenomics [35.47381119898764]
タンパク質をベースとした遺伝子表現をコンテキスト認識および構造関連トークン化剤として導入する。
MGMとTEM-CLは1億のメダゲノミクス配列を事前訓練した新しいメダゲノミクス言語モデルであるNAMEを構成する。
論文 参考訳(メタデータ) (2024-02-24T13:13:17Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - MuSe-GNN: Learning Unified Gene Representation From Multimodal
Biological Graph Data [22.938437500266847]
マルチモーダル類似性学習グラフニューラルネットワークという新しいモデルを提案する。
マルチモーダル機械学習とディープグラフニューラルネットワークを組み合わせて、単一セルシークエンシングと空間転写データから遺伝子発現を学習する。
本モデルでは, 遺伝子機能, 組織機能, 疾患, 種進化の解析のために, 統合された遺伝子表現を効率よく生成する。
論文 参考訳(メタデータ) (2023-09-29T13:33:53Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
遺伝子ワイド・アソシエーション(GWAS)は、遺伝的変異と特定の形質の関係を同定するために用いられる。
画像遺伝学の表現学習は、GWASによって引き起こされる固有の課題により、ほとんど探索されていない。
本稿では,GWAS の具体的な課題に対処するために,トランスモーダル学習フレームワーク Genetic InfoMax (GIM) を提案する。
論文 参考訳(メタデータ) (2023-09-26T03:59:21Z) - DDeMON: Ontology-based function prediction by Deep Learning from Dynamic
Multiplex Networks [0.7349727826230864]
本研究の目的は、遺伝子発現の時間的ダイナミクスとシステムのレベル情報の融合がいかにして新しい遺伝子機能を予測するかを検討することである。
時間依存型多スケール生体情報を用いた関数アノテーションのスケーラブルなシステムレベルの推論手法であるDDeMONを提案する。
論文 参考訳(メタデータ) (2023-02-08T06:53:02Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Unsupervised ensemble-based phenotyping helps enhance the
discoverability of genes related to heart morphology [57.25098075813054]
我々はUn Phenotype Ensemblesという名の遺伝子発見のための新しいフレームワークを提案する。
教師なしの方法で学習された表現型のセットをプールすることで、冗長だが非常に表現性の高い表現を構築する。
これらの表現型は、(GWAS)を介して分析され、高い自信と安定した関連のみを保持する。
論文 参考訳(メタデータ) (2023-01-07T18:36:44Z) - Gene Function Prediction with Gene Interaction Networks: A Context Graph
Kernel Approach [24.234645183601998]
そこで本研究では,焦点遺伝子に関連付けられた遺伝子相互作用ネットワークとして,遺伝子コンテキストグラフを用いた機能推定を提案する。
カーネルベースの機械学習フレームワークでは、コンテキストグラフで情報をキャプチャするコンテキストグラフカーネルを設計する。
論文 参考訳(メタデータ) (2022-04-22T02:54:01Z) - SimpleChrome: Encoding of Combinatorial Effects for Predicting Gene
Expression [8.326669256957352]
遺伝子のヒストン修飾表現を学習するディープラーニングモデルであるSimpleChromeを紹介します。
このモデルから得られた特徴により、遺伝子間相互作用の潜在効果と標的遺伝子の発現に対する直接遺伝子調節をよりよく理解することができます。
論文 参考訳(メタデータ) (2020-12-15T23:30:36Z) - A Novel Granular-Based Bi-Clustering Method of Deep Mining the
Co-Expressed Genes [76.84066556597342]
ビクラスタリング法は、サンプル(遺伝子)のサブセットが試験条件下で協調的に制御されるバイクラスタをマイニングするために用いられる。
残念ながら、従来の二クラスタ法はそのような二クラスタを発見するのに完全には効果がない。
本稿では,グラニュラーコンピューティングの理論を取り入れた新しい2クラスタリング手法を提案する。
論文 参考訳(メタデータ) (2020-05-12T02:04:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。