論文の概要: Breast Cancer Histopathology Image based Gene Expression Prediction
using Spatial Transcriptomics data and Deep Learning
- arxiv url: http://arxiv.org/abs/2303.09987v1
- Date: Fri, 17 Mar 2023 14:03:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-20 14:25:46.062191
- Title: Breast Cancer Histopathology Image based Gene Expression Prediction
using Spatial Transcriptomics data and Deep Learning
- Title(参考訳): 空間トランスクリプトミクスデータとディープラーニングを用いた乳癌病理組織像に基づく遺伝子発現予測
- Authors: Md Mamunur Rahaman, Ewan K. A. Millar and Erik Meijering
- Abstract要約: 本稿では,病理組織像から遺伝子発現を予測するためのディープラーニングフレームワークBrST-Netを提案する。
我々は,250遺伝子の予測に事前訓練した重みを使わずに10種類の最先端ディープラーニングモデルを訓練し,評価した。
本手法は,0.50以上の正相関係数を持つ24遺伝子を含む237遺伝子を同定し,過去の研究より優れていた。
- 参考スコア(独自算出の注目度): 3.583756449759971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tumour heterogeneity in breast cancer poses challenges in predicting outcome
and response to therapy. Spatial transcriptomics technologies may address these
challenges, as they provide a wealth of information about gene expression at
the cell level, but they are expensive, hindering their use in large-scale
clinical oncology studies. Predicting gene expression from hematoxylin and
eosin stained histology images provides a more affordable alternative for such
studies. Here we present BrST-Net, a deep learning framework for predicting
gene expression from histopathology images using spatial transcriptomics data.
Using this framework, we trained and evaluated 10 state-of-the-art deep
learning models without utilizing pretrained weights for the prediction of 250
genes. To enhance the generalisation performance of the main network, we
introduce an auxiliary network into the framework. Our methodology outperforms
previous studies, with 237 genes identified with positive correlation,
including 24 genes with a median correlation coefficient greater than 0.50.
This is a notable improvement over previous studies, which could predict only
102 genes with positive correlation, with the highest correlation values
ranging from 0.29 to 0.34.
- Abstract(参考訳): 乳癌における腫瘍の多様性は予後予測や治療への反応に困難をもたらす。
空間転写学技術は、細胞レベルで遺伝子発現に関する豊富な情報を提供するため、これらの課題に対処できるが、それらは高価であり、大規模な臨床腫瘍学研究での使用を妨げている。
ヘマトキシリンおよびエオシン染色組織像からの遺伝子発現の予測は、そのような研究のより安価な代替手段となる。
本稿では,空間的転写学データを用いた病理組織画像からの遺伝子発現予測のための深層学習フレームワークbrst-netを提案する。
この枠組みを用いて,250遺伝子の予測に事前訓練した重みを使わずに10種類の最先端ディープラーニングモデルを訓練・評価した。
メインネットワークの一般化性能を向上させるため,フレームワークに補助ネットワークを導入する。
本手法は,0.50以上の正相関係数を持つ24遺伝子を含む237遺伝子を同定し,過去の研究より優れていた。
これは以前の研究よりも顕著な改善であり、正の相関を持つ102遺伝子しか予測できず、最も高い相関値は0.29から0.34である。
関連論文リスト
- Enhancing Clinically Significant Prostate Cancer Prediction in T2-weighted Images through Transfer Learning from Breast Cancer [71.91773485443125]
転送学習は、よりリッチなデータを持つドメインから取得した機能を活用して、限られたデータを持つドメインのパフォーマンスを向上させるテクニックである。
本稿では,T2強調画像における乳癌からの転移学習による臨床的に有意な前立腺癌予知の改善について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:57:27Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - An end-to-end framework for gene expression classification by
integrating a background knowledge graph: application to cancer prognosis
prediction [1.5484595752241122]
我々は、一次データの分類モデルを構築するために、二次データを扱うエンドツーエンドフレームワークを提案した。
我々はこの枠組みを,遺伝子発現データと生物学的ネットワークを用いた癌予後予測に応用した。
論文 参考訳(メタデータ) (2023-06-29T11:20:47Z) - hist2RNA: An efficient deep learning architecture to predict gene
expression from breast cancer histopathology images [11.822321981275232]
深層学習アルゴリズムは、デジタル病理画像中の形態パターンを効果的に抽出し、分子の表現型を迅速かつ低コストで予測することができる。
我々は,138遺伝子の発現を予測するために,バルクRNAシークエンシング技術にインスパイアされたhist2RNAという新しい計算効率の高い手法を提案する。
論文 参考訳(メタデータ) (2023-04-10T10:54:32Z) - Machine Learning Methods for Cancer Classification Using Gene Expression
Data: A Review [77.34726150561087]
がんは心臓血管疾患の2番目の死因である。
遺伝子発現は癌の早期発見において基本的な役割を担っている。
本研究は,機械学習を用いた癌分類における遺伝子発現解析の最近の進歩を概説する。
論文 参考訳(メタデータ) (2023-01-28T15:03:03Z) - Attention-based Interpretable Regression of Gene Expression in Histology [0.0]
深層学習の解釈可能性は、医用画像モデルの信頼性を評価するために広く利用されている。
腫瘍組織の顕微な外観と遺伝子発現のプロファイリングとの関連性を明らかにする。
論文 参考訳(メタデータ) (2022-08-29T07:30:33Z) - rfPhen2Gen: A machine learning based association study of brain imaging
phenotypes to genotypes [71.1144397510333]
56個の脳画像QTを用いてSNPを予測する機械学習モデルを学習した。
アルツハイマー病(AD)リスク遺伝子APOEのSNPは、ラスソとランダムな森林に対して最低のRMSEを有していた。
ランダム・フォレストは、線形モデルによって優先順位付けされなかったが、脳関連疾患と関連があることが知られている追加のSNPを特定した。
論文 参考訳(メタデータ) (2022-03-31T20:15:22Z) - Transcriptome-wide prediction of prostate cancer gene expression from
histopathology images using co-expression based convolutional neural networks [0.8874479658912061]
形態と遺伝子発現の関係を特異的にモデル化する新しい計算効率の高い手法を提案する。
前立腺癌におけるRNA塩基配列推定のためのCNNを用いた第1回トランスクリプトーム解析を行った。
論文 参考訳(メタデータ) (2021-04-19T13:50:25Z) - Cancer Gene Profiling through Unsupervised Discovery [49.28556294619424]
低次元遺伝子バイオマーカーを発見するための,新しい,自動かつ教師なしのフレームワークを提案する。
本手法は,高次元中心型非監視クラスタリングアルゴリズムLP-Stabilityアルゴリズムに基づく。
私達の署名は免疫炎症および免疫砂漠の腫瘍の区別の有望な結果報告します。
論文 参考訳(メタデータ) (2021-02-11T09:04:45Z) - Using ontology embeddings for structural inductive bias in gene
expression data analysis [6.587739898387445]
がん患者の遺伝子発現レベルに基づいて、診断、生存分析、治療計画を改善することができる。
本稿では,遺伝子発現データから患者の分類作業を行う機械学習システムに,遺伝子に関する生物学的知識を取り入れることを提案する。
論文 参考訳(メタデータ) (2020-11-22T12:13:29Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。