Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release
- URL: http://arxiv.org/abs/2011.11421v3
- Date: Wed, 24 Nov 2021 23:02:31 GMT
- Title: Deep Directed Information-Based Learning for Privacy-Preserving Smart
Meter Data Release
- Authors: Mohammadhadi Shateri, Francisco Messina, Pablo Piantanida, Fabrice
Labeau
- Abstract summary: We study the problem in the context of time series data and smart meters (SMs) power consumption measurements.
We introduce the Directed Information (DI) as a more meaningful measure of privacy in the considered setting.
Our empirical studies on real-world data sets from SMs measurements in the worst-case scenario show the existing trade-offs between privacy and utility.
- Score: 30.409342804445306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The explosion of data collection has raised serious privacy concerns in users
due to the possibility that sharing data may also reveal sensitive information.
The main goal of a privacy-preserving mechanism is to prevent a malicious third
party from inferring sensitive information while keeping the shared data
useful. In this paper, we study this problem in the context of time series data
and smart meters (SMs) power consumption measurements in particular. Although
Mutual Information (MI) between private and released variables has been used as
a common information-theoretic privacy measure, it fails to capture the causal
time dependencies present in the power consumption time series data. To
overcome this limitation, we introduce the Directed Information (DI) as a more
meaningful measure of privacy in the considered setting and propose a novel
loss function. The optimization is then performed using an adversarial
framework where two Recurrent Neural Networks (RNNs), referred to as the
releaser and the adversary, are trained with opposite goals. Our empirical
studies on real-world data sets from SMs measurements in the worst-case
scenario where an attacker has access to all the training data set used by the
releaser, validate the proposed method and show the existing trade-offs between
privacy and utility.
Related papers
- Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
This paper characterizes the impact of Differential Privacy on bias and unfairness in the context of releasing information about networks.
We consider a network release problem where the network structure is known to all, but the weights on edges must be released privately.
Our work provides theoretical foundations and empirical evidence into the bias and unfairness arising due to privacy in these networked decision problems.
arXiv Detail & Related papers (2024-08-08T08:37:37Z) - Defining 'Good': Evaluation Framework for Synthetic Smart Meter Data [14.779917834583577]
We show that standard privacy attack methods are inadequate for assessing privacy risks of smart meter datasets.
We propose an improved method by injecting training data with implausible outliers, then launching privacy attacks directly on these outliers.
arXiv Detail & Related papers (2024-07-16T14:41:27Z) - A Summary of Privacy-Preserving Data Publishing in the Local Setting [0.6749750044497732]
Statistical Disclosure Control aims to minimize the risk of exposing confidential information by de-identifying it.
We outline the current privacy-preserving techniques employed in microdata de-identification, delve into privacy measures tailored for various disclosure scenarios, and assess metrics for information loss and predictive performance.
arXiv Detail & Related papers (2023-12-19T04:23:23Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
This paper adopts Arimoto's $alpha$-Mutual Information as a tunable privacy measure.
We formulate a general distortion-based mechanism that manipulates the original data to offer privacy protection.
arXiv Detail & Related papers (2023-10-27T16:26:14Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
We argue for a realistic MIA setting that assumes the attacker has some knowledge of the underlying data distribution.
We propose DOMIAS, a density-based MIA model that aims to infer membership by targeting local overfitting of the generative model.
arXiv Detail & Related papers (2023-02-24T11:27:39Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
arXiv Detail & Related papers (2022-11-18T11:39:03Z) - Active Privacy-Utility Trade-off Against Inference in Time-Series Data
Sharing [29.738666406095074]
We consider a user releasing her data containing personal information in return of a service from an honest-but-curious service provider (SP)
We formulate both problems as partially observable Markov decision processes (POMDPs) and numerically solve them by advantage actor-critic (A2C) deep reinforcement learning (DRL)
We evaluate the privacy-utility trade-off (PUT) of the proposed policies on both the synthetic data and smoking activity dataset, and show their validity by testing the activity detection accuracy of the SP modeled by a long short-term memory (LSTM) neural network.
arXiv Detail & Related papers (2022-02-11T18:57:31Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
Local exchange of estimates allows inference of data based on private data.
perturbations chosen independently at every agent, resulting in a significant performance loss.
We propose an alternative scheme, which constructs perturbations according to a particular nullspace condition, allowing them to be invisible.
arXiv Detail & Related papers (2020-10-23T10:35:35Z) - Privacy-Aware Time-Series Data Sharing with Deep Reinforcement Learning [33.42328078385098]
We study the privacy-utility trade-off (PUT) in time-series data sharing.
Methods that preserve the privacy for the current time may leak significant amount of information at the trace level.
We consider sharing the distorted version of a user's true data sequence with an untrusted third party.
arXiv Detail & Related papers (2020-03-04T18:47:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.