論文の概要: RISE-SLAM: A Resource-aware Inverse Schmidt Estimator for SLAM
- arxiv url: http://arxiv.org/abs/2011.11730v1
- Date: Mon, 23 Nov 2020 21:10:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-22 03:05:00.266171
- Title: RISE-SLAM: A Resource-aware Inverse Schmidt Estimator for SLAM
- Title(参考訳): RISE-SLAM: SLAMのためのリソース対応逆シュミット推定器
- Authors: Tong Ke, Kejian J. Wu, and Stergios I. Roumeliotis
- Abstract要約: 視覚-慣性同時ローカライズ・マッピング(SLAM)のためのRISE-SLAMアルゴリズムを提案する。
線形メモリ要件と調整可能な処理コストを有する情報領域に一貫した新しい近似手法を導出する。
特に、リソースを意識した逆シュミット推定器(RISE)は、計算効率のトレーディング推定精度を実現する。
- 参考スコア(独自算出の注目度): 7.388000129690679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present the RISE-SLAM algorithm for performing
visual-inertial simultaneous localization and mapping (SLAM), while improving
estimation consistency. Specifically, in order to achieve real-time operation,
existing approaches often assume previously-estimated states to be perfectly
known, which leads to inconsistent estimates. Instead, based on the idea of the
Schmidt-Kalman filter, which has processing cost linear in the size of the
state vector but quadratic memory requirements, we derive a new consistent
approximate method in the information domain, which has linear memory
requirements and adjustable (constant to linear) processing cost. In
particular, this method, the resource-aware inverse Schmidt estimator (RISE),
allows trading estimation accuracy for computational efficiency. Furthermore,
and in order to better address the requirements of a SLAM system during an
exploration vs. a relocalization phase, we employ different configurations of
RISE (in terms of the number and order of states updated) to maximize accuracy
while preserving efficiency. Lastly, we evaluate the proposed RISE-SLAM
algorithm on publicly-available datasets and demonstrate its superiority, both
in terms of accuracy and efficiency, as compared to alternative visual-inertial
SLAM systems.
- Abstract(参考訳): 本稿では,視覚-慣性同時ローカライゼーションとマッピング(SLAM)を行うRISE-SLAMアルゴリズムを提案する。
特に、リアルタイム操作を達成するために、既存のアプローチでは、事前に見積もられた状態が完全に知られていると仮定されることが多い。
その代わり、状態ベクトルの大きさと二次的メモリ要求を線形に処理するschmidt-kalmanフィルタのアイデアに基づき、線形メモリ要求と調整可能な(線形な)処理コストを持つ情報領域における新しい一貫した近似手法を導出する。
特に、リソースを意識した逆シュミット推定器(RISE)は、計算効率のトレードオフ推定精度を実現する。
さらに,探索段階と再局在段階のSLAMシステムの要求に対処するために,効率を保ちながら精度を最大化するために,RISEの異なる構成(状態数と順序の点で)を採用する。
最後に、提案したRISE-SLAMアルゴリズムを公開データセット上で評価し、その精度と効率の両面において、代替の視覚慣性SLAMシステムと比較して優位性を示す。
関連論文リスト
- Efficient Learning of POMDPs with Known Observation Model in Average-Reward Setting [56.92178753201331]
我々は,POMDPパラメータを信念に基づくポリシを用いて収集したサンプルから学習することのできる観測・認識スペクトル(OAS)推定手法を提案する。
提案するOAS-UCRLアルゴリズムに対して,OASプロシージャの整合性を示し,$mathcalO(sqrtT log(T)$の残差保証を証明した。
論文 参考訳(メタデータ) (2024-10-02T08:46:34Z) - Robust Second-order LiDAR Bundle Adjustment Algorithm Using Mean Squared Group Metric [5.153195958837083]
我々は,LiDAR BAアルゴリズムの最適化目標を構築するために,新しい平均2乗群計量(MSGM)を提案する。
堅牢なカーネル関数を統合することで、BAアルゴリズムに関わるメトリクスを再重み付けし、ソリューションプロセスの堅牢性を高める。
論文 参考訳(メタデータ) (2024-09-03T12:53:39Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - STEERING: Stein Information Directed Exploration for Model-Based
Reinforcement Learning [111.75423966239092]
遷移モデルの現在の推定値と未知の最適値との間の積分確率距離(IPM)の観点から探索インセンティブを提案する。
KSDに基づく新しいアルゴリズムを開発した。 textbfSTEin information dirtextbfEcted Explor for model-based textbfReinforcement Learntextbfing。
論文 参考訳(メタデータ) (2023-01-28T00:49:28Z) - Online Kernel CUSUM for Change-Point Detection [12.383181837411469]
本稿では,変化点検出のための計算効率の良いオンラインカーネルCumulative Sum (CUSUM) を提案する。
提案手法は,既存のカーネルベースの変更点検出法と比較して,小さな変更に対する感度の向上を示す。
論文 参考訳(メタデータ) (2022-11-28T05:08:30Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - Greedy-Based Feature Selection for Efficient LiDAR SLAM [12.257338124961622]
本論文では,L-SLAMシステムの精度と効率を,機能のサブセットを積極的に選択することで大幅に向上できることを実証する。
提案手法は,最先端のL-SLAMシステムと比較して,ローカライズ誤差と高速化が低いことを示す。
論文 参考訳(メタデータ) (2021-03-24T11:03:16Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
スパースマルコフ過程は、誘導変数の使用と効率的なカルマンフィルタライク再帰を結合する。
我々は,局所ガウス項を用いて非ガウス的確率を近似する一般的なサイトベースアプローチであるsitesを導出する。
提案手法は,変動推論,期待伝播,古典非線形カルマンスムーサなど,機械学習と信号処理の両方から得られるアルゴリズムの新たなスパース拡張の一群を導出する。
派生した方法は、モデルが時間と空間の両方で別々の誘導点を持つ文学時間データに適しています。
論文 参考訳(メタデータ) (2021-03-19T09:50:53Z) - Pushing the Envelope of Rotation Averaging for Visual SLAM [69.7375052440794]
視覚SLAMシステムのための新しい最適化バックボーンを提案する。
従来の単分子SLAMシステムの精度, 効率, 堅牢性を向上させるために, 平均化を活用している。
我々のアプローチは、公開ベンチマークの最先端技術に対して、同等の精度で最大10倍高速に表示することができる。
論文 参考訳(メタデータ) (2020-11-02T18:02:26Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z) - Online Covariance Matrix Estimation in Stochastic Gradient Descent [10.153224593032677]
勾配降下(SGD)は,特に大規模データセットやオンライン学習においてパラメータ推定に広く用いられている。
本稿では,オンライン環境でのSGDに基づく推定値の統計的推測を定量化することを目的とする。
論文 参考訳(メタデータ) (2020-02-10T17:46:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。