Probabilistic modeling of discrete structural response with application
to composite plate penetration models
- URL: http://arxiv.org/abs/2011.11780v1
- Date: Mon, 23 Nov 2020 22:45:09 GMT
- Title: Probabilistic modeling of discrete structural response with application
to composite plate penetration models
- Authors: Anindya Bhaduri, Christopher S. Meyer, John W. Gillespie Jr., Bazle Z.
Haque, Michael D. Shields, Lori Graham-Brady
- Abstract summary: This paper deals with the development of a computational framework for generation of probabilistic penetration response of S-2 glass/SC-15 epoxy composite plates under ballistic impact.
An adaptive domain-based decomposition and classification method, combined with sparse grid sampling, is used to develop an efficient classification surrogate modeling algorithm for such discrete outputs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discrete response of structures is often a key probabilistic quantity of
interest. For example, one may need to identify the probability of a binary
event, such as, whether a structure has buckled or not. In this study, an
adaptive domain-based decomposition and classification method, combined with
sparse grid sampling, is used to develop an efficient classification surrogate
modeling algorithm for such discrete outputs. An assumption of monotonic
behaviour of the output with respect to all model parameters, based on the
physics of the problem, helps to reduce the number of model evaluations and
makes the algorithm more efficient. As an application problem, this paper deals
with the development of a computational framework for generation of
probabilistic penetration response of S-2 glass/SC-15 epoxy composite plates
under ballistic impact. This enables the computationally feasible generation of
the probabilistic velocity response (PVR) curve or the $V_0-V_{100}$ curve as a
function of the impact velocity, and the ballistic limit velocity prediction as
a function of the model parameters. The PVR curve incorporates the variability
of the model input parameters and describes the probability of penetration of
the plate as a function of impact velocity.
Related papers
- Nonparametric estimation of Hawkes processes with RKHSs [1.775610745277615]
This paper addresses nonparametric estimation of nonlinear Hawkes processes, where the interaction functions are assumed to lie in a reproducing kernel space (RKHS)
Motivated by applications in neuroscience, the model allows complex interaction functions, in order to express exciting and inhibiting effects, but also a combination of both.
It shows that our method achieves a better performance compared to related nonparametric estimation techniques and suits neuronal applications.
arXiv Detail & Related papers (2024-11-01T14:26:50Z) - Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
We propose an alternative paradigm for answering causal-effect queries over discrete observable variables.
We learn the causal Bayesian network and its confounding latent variables directly from the observational data.
We show that this emphmodel completion learning approach can be more effective than estimand approaches.
arXiv Detail & Related papers (2024-08-26T08:39:09Z) - Maximum a Posteriori Estimation for Linear Structural Dynamics Models Using Bayesian Optimization with Rational Polynomial Chaos Expansions [0.01578888899297715]
We propose an extension to an existing sparse Bayesian learning approach for MAP estimation.
We introduce a Bayesian optimization approach, which allows to adaptively enrich the experimental design.
By combining the sparsity-inducing learning procedure with the experimental design, we effectively reduce the number of model evaluations.
arXiv Detail & Related papers (2024-08-07T06:11:37Z) - Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks [0.0]
Wind represents a particularly challenging variable to model due to its high spatial and temporal variability.
This paper presents a novel approach that integrates Gaussian processes and neural networks to model surface wind gusts at sub-kilometer resolution.
arXiv Detail & Related papers (2024-05-21T09:07:47Z) - Stochastic stiffness identification and response estimation of
Timoshenko beams via physics-informed Gaussian processes [0.0]
This paper presents a physics-informed Gaussian process (GP) model for Timoshenko beam elements.
The proposed approach is effective at identifying structural parameters and is capable of fusing data from heterogeneous and multi-fidelity sensors.
arXiv Detail & Related papers (2023-09-21T08:22:12Z) - A probabilistic, data-driven closure model for RANS simulations with aleatoric, model uncertainty [1.8416014644193066]
We propose a data-driven, closure model for Reynolds-averaged Navier-Stokes (RANS) simulations that incorporates aleatoric, model uncertainty.
A fully Bayesian formulation is proposed, combined with a sparsity-inducing prior in order to identify regions in the problem domain where the parametric closure is insufficient.
arXiv Detail & Related papers (2023-07-05T16:53:31Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
A new hybrid predictive Reduced Order Model (ROM) is proposed to solve reacting flow problems.
The number of degrees of freedom is reduced from thousands of temporal points to a few POD modes with their corresponding temporal coefficients.
Two different deep learning architectures have been tested to predict the temporal coefficients.
arXiv Detail & Related papers (2023-01-24T08:39:20Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
We propose a Natural Gradient Boosting (NGBoost) approach based on nonparametrically modeling the conditional parameters of the multivariate predictive distribution.
Our method is robust, works out-of-the-box without extensive tuning, is modular with respect to the assumed target distribution, and performs competitively in comparison to existing approaches.
arXiv Detail & Related papers (2021-06-07T17:44:49Z) - Probabilistic Circuits for Variational Inference in Discrete Graphical
Models [101.28528515775842]
Inference in discrete graphical models with variational methods is difficult.
Many sampling-based methods have been proposed for estimating Evidence Lower Bound (ELBO)
We propose a new approach that leverages the tractability of probabilistic circuit models, such as Sum Product Networks (SPN)
We show that selective-SPNs are suitable as an expressive variational distribution, and prove that when the log-density of the target model is aweighted the corresponding ELBO can be computed analytically.
arXiv Detail & Related papers (2020-10-22T05:04:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.