Ultrasound Confidence Maps of Intensity and Structure Based on Directed
Acyclic Graphs and Artifact Models
- URL: http://arxiv.org/abs/2011.11956v4
- Date: Tue, 27 Apr 2021 18:52:10 GMT
- Title: Ultrasound Confidence Maps of Intensity and Structure Based on Directed
Acyclic Graphs and Artifact Models
- Authors: Alex Ling Yu Hung, Wanwen Chen, John Galeotti
- Abstract summary: Ultrasound imaging has inherent artifacts that are challenging to model, such as attenuation, shadowing, diffraction, speckle, etc.
These artifacts can potentially confuse image analysis algorithms unless an attempt is made to assess the certainty of individual pixel values.
Our novel confidence algorithms analyze pixel values using a directed acyclic graph based on acoustic physical properties of ultrasound imaging.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ultrasound imaging has been improving, but continues to suffer from inherent
artifacts that are challenging to model, such as attenuation, shadowing,
diffraction, speckle, etc. These artifacts can potentially confuse image
analysis algorithms unless an attempt is made to assess the certainty of
individual pixel values. Our novel confidence algorithms analyze pixel values
using a directed acyclic graph based on acoustic physical properties of
ultrasound imaging. We demonstrate unique capabilities of our approach and
compare it against previous confidence-measurement algorithms for
shadow-detection and image-compounding tasks.
Related papers
- Denoising Plane Wave Ultrasound Images Using Diffusion Probabilistic Models [3.3463490716514177]
High frame-rate ultrasound imaging is a cutting-edge technique that enables high frame-rate imaging.
One challenge associated with high frame-rate ultrasound imaging is the high noise associated with them, hindering their wider adoption.
Our proposed solution aims to enhance plane wave image quality.
Specifically, the method considers the distinction between low-angle and high-angle compounding plane waves as noise.
In addition, our approach employs natural image segmentation masks as intensity maps for the generated images, resulting in accurate denoising for various anatomy shapes.
arXiv Detail & Related papers (2024-08-20T16:31:31Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Compressive Ptychography using Deep Image and Generative Priors [9.658250977094562]
Ptychography is a well-established coherent diffraction imaging technique that enables non-invasive imaging of samples at a nanometer scale.
One major limitation of ptychography is the long data acquisition time due to mechanical scanning of the sample.
We propose a generative model combining deep image priors with deep generative priors.
arXiv Detail & Related papers (2022-05-05T02:18:26Z) - A Novel Image Denoising Algorithm Using Concepts of Quantum Many-Body
Theory [40.29747436872773]
This paper presents a novel image denoising algorithm inspired by the quantum many-body theory.
Based on patch analysis, the similarity measures in a local image neighborhood are formalized through a term akin to interaction in quantum mechanics.
We show the ability of our approach to deal with practical images denoising problems such as medical ultrasound image despeckling applications.
arXiv Detail & Related papers (2021-12-16T23:34:37Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
Deep generative models have led to highly realistic media, known as deepfakes, that are commonly indistinguishable from real to human eyes.
We propose a novel fake detection that is designed to re-synthesize testing images and extract visual cues for detection.
We demonstrate the improved effectiveness, cross-GAN generalization, and robustness against perturbations of our approach in a variety of detection scenarios.
arXiv Detail & Related papers (2021-05-29T21:22:24Z) - Ensembling with Deep Generative Views [72.70801582346344]
generative models can synthesize "views" of artificial images that mimic real-world variations, such as changes in color or pose.
Here, we investigate whether such views can be applied to real images to benefit downstream analysis tasks such as image classification.
We use StyleGAN2 as the source of generative augmentations and investigate this setup on classification tasks involving facial attributes, cat faces, and cars.
arXiv Detail & Related papers (2021-04-29T17:58:35Z) - Just Noticeable Difference for Machine Perception and Generation of
Regularized Adversarial Images with Minimal Perturbation [8.920717493647121]
We introduce a measure for machine perception inspired by the concept of Just Noticeable Difference (JND) of human perception.
We suggest an adversarial image generation algorithm, which iteratively distorts an image by an additive noise until the machine learning model detects the change in the image by outputting a false label.
We evaluate the adversarial images generated by our algorithm both qualitatively and quantitatively on CIFAR10, ImageNet, and MS COCO datasets.
arXiv Detail & Related papers (2021-02-16T11:01:55Z) - Weakly- and Semi-Supervised Probabilistic Segmentation and
Quantification of Ultrasound Needle-Reverberation Artifacts to Allow Better
AI Understanding of Tissue Beneath Needles [0.0]
We propose a probabilistic needle-and-reverberation-artifact segmentation algorithm to separate desired tissue-based pixel values from superimposed artifacts.
Our method matches state-of-the-art artifact segmentation performance and sets a new standard in estimating the per-pixel contributions of artifact vs underlying anatomy.
arXiv Detail & Related papers (2020-11-24T08:34:38Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Self-Supervised Linear Motion Deblurring [112.75317069916579]
Deep convolutional neural networks are state-of-the-art for image deblurring.
We present a differentiable reblur model for self-supervised motion deblurring.
Our experiments demonstrate that self-supervised single image deblurring is really feasible.
arXiv Detail & Related papers (2020-02-10T20:15:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.