論文の概要: EEG-GCNN: Augmenting Electroencephalogram-based Neurological Disease
Diagnosis using a Domain-guided Graph Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2011.12107v1
- Date: Tue, 17 Nov 2020 20:25:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-24 17:59:37.664953
- Title: EEG-GCNN: Augmenting Electroencephalogram-based Neurological Disease
Diagnosis using a Domain-guided Graph Convolutional Neural Network
- Title(参考訳): EEG-GCNN : 領域誘導グラフ畳み込みニューラルネットワークを用いた脳波による神経疾患の診断
- Authors: Neeraj Wagh, Yogatheesan Varatharajah
- Abstract要約: 本稿では,頭皮電気脳波(EEG)を用いた神経疾患の診断を改善するための新しいグラフ畳み込みニューラルネットワーク(GCNN)を提案する。
脳波データのための新しいGCNNモデルであるEEG-GCNNを提案し、頭皮電極間の空間的および機能的接続を捉える。
我々は、EEG-GCNNが人間のベースラインと古典的機械学習(ML)ベースラインを大幅に上回っており、AUCは0.90であることを示した。
- 参考スコア(独自算出の注目度): 0.21756081703275995
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper presents a novel graph convolutional neural network (GCNN)-based
approach for improving the diagnosis of neurological diseases using
scalp-electroencephalograms (EEGs). Although EEG is one of the main tests used
for neurological-disease diagnosis, the sensitivity of EEG-based expert visual
diagnosis remains at $\sim$50\%. This indicates a clear need for advanced
methodology to reduce the false negative rate in detecting abnormal scalp-EEGs.
In that context, we focus on the problem of distinguishing the abnormal scalp
EEGs of patients with neurological diseases, which were originally classified
as 'normal' by experts, from the scalp EEGs of healthy individuals. The
contributions of this paper are three-fold: 1) we present EEG-GCNN, a novel
GCNN model for EEG data that captures both the spatial and functional
connectivity between the scalp electrodes, 2) using EEG-GCNN, we perform the
first large-scale evaluation of the aforementioned hypothesis, and 3) using two
large scalp-EEG databases, we demonstrate that EEG-GCNN significantly
outperforms the human baseline and classical machine learning (ML) baselines,
with an AUC of 0.90.
- Abstract(参考訳): 本稿では,頭皮電気脳波(EEG)を用いて神経疾患の診断を改善するための新しいグラフ畳み込みニューラルネットワーク(GCNN)を提案する。
脳波は神経疾患の診断に使用される主要な検査の1つであるが、脳波に基づく専門的視覚診断の感度は$\sim$50\%である。
このことは、異常な頭皮EEGを検出する際に、偽陰性率を減らすための高度な方法の必要性が明らかであることを示している。
そこで本研究では,神経疾患患者の頭皮脳波の異常を専門家によって「正常」と分類し,健常者の頭皮脳波と区別する問題に焦点を当てた。
この論文の貢献は3つある。
1)頭皮電極間の空間的および機能的接続を捕捉する脳波データのための新しいGCNNモデルであるEEG-GCNNを提案する。
2) eeg-gcnnを用いて, 上記の仮説の大規模評価を行った。
3)2つの大きな頭皮EEGデータベースを用いて,脳波GCNNが人間のベースラインと古典的機械学習(ML)ベースラインを大幅に上回り,AUCは0。
関連論文リスト
- RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEGはRobust Inter-Subject Electrode implantation Variability iEEGの略である。
iEEGデコーダモデルを開発し,各患者に電極の座標を必要とせずに複数の患者のデータに適用した。
分析の結果, RISE-iEEG は HTNet や EEGNet よりも F1 よりも10%高い値を示した。
論文 参考訳(メタデータ) (2024-08-12T18:33:19Z) - Dynamic GNNs for Precise Seizure Detection and Classification from EEG Data [6.401370088497331]
本稿では,脳波の位置と対応する脳領域のセマンティクスの相互作用を捉える動的グラフニューラルネットワーク(GNN)フレームワークであるNeuroGNNを紹介する。
実世界のデータを用いた実験により、NeuroGNNは既存の最先端モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-05-08T21:36:49Z) - hvEEGNet: exploiting hierarchical VAEs on EEG data for neuroscience
applications [3.031375888004876]
脳波の既存のDLベースのモデリング手法に2つの課題がある。
被験者間の高いばらつきと低信号対雑音比は、脳波データの良好な品質を確保するのを困難にしている。
本稿では,高忠実度脳波再構成問題を対象とした2つの変分オートエンコーダモデル,すなわちvEEGNet-ver3とhvEEGNetを提案する。
論文 参考訳(メタデータ) (2023-11-20T15:36:31Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
多チャンネル脳波データからいくつかの皮質下領域の活性を回復するための解釈可能な領域基底解を提案する。
我々は,皮質下核の血行動態信号の頭皮脳波予測の空間的・時間的パターンを復元する。
論文 参考訳(メタデータ) (2022-10-23T15:11:37Z) - Task-oriented Self-supervised Learning for Anomaly Detection in
Electroencephalography [51.45515911920534]
タスク指向型自己教師型学習手法を提案する。
大きなカーネルを持つ特定の2つの分岐畳み込みニューラルネットワークを特徴抽出器として設計する。
効果的に設計され、訓練された特徴抽出器は、より優れた特徴表現を脳波から抽出できることが示されている。
論文 参考訳(メタデータ) (2022-07-04T13:15:08Z) - Automated Detection of Abnormal EEGs in Epilepsy With a Compact and
Efficient CNN Model [9.152759278163954]
本稿では,脳波の異常時間間隔と電極を検出するための,コンパクトで効率的な畳み込みニューラルネットワーク(CNN)の開発について述べる。
EEGNetとは異なり、提案モデルであるmEEGNetは同じ数の電極入力と出力を持ち、異常を検出する。
その結果、mEEGNetは、曲線下における異常脳波、F1値、および既存のCNNと同等以上の感度を検出できた。
論文 参考訳(メタデータ) (2021-05-21T16:52:56Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Attention-based Graph ResNet for Motor Intent Detection from Raw EEG
signals [8.775745069873558]
前回の研究では、脳波(EEG)信号は脳波電極のトポロジカルな関係を考慮していない。
グラフ畳み込みニューラルネットワーク(GCN: Graph Convolutional Neural Network)の新たな構造である、注意に基づくグラフ残差ネットワークが、人間の運動意図を検出するために提示された。
生の脳波運動画像における深部ネットワークに関する劣化問題に対処するために, フルアテンションアーキテクチャによる深部学習を導入した。
論文 参考訳(メタデータ) (2020-06-25T09:29:48Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。