xFraud: Explainable Fraud Transaction Detection
- URL: http://arxiv.org/abs/2011.12193v3
- Date: Wed, 25 May 2022 09:21:32 GMT
- Title: xFraud: Explainable Fraud Transaction Detection
- Authors: Susie Xi Rao, Shuai Zhang, Zhichao Han, Zitao Zhang, Wei Min, Zhiyao
Chen, Yinan Shan, Yang Zhao, Ce Zhang
- Abstract summary: The xFraud detector can effectively and efficiently predict the legitimacy of incoming transactions.
The explainer in xFraud can generate meaningful and human-understandable explanations from graphs.
- Score: 18.43531904043454
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: At online retail platforms, it is crucial to actively detect the risks of
transactions to improve customer experience and minimize financial loss. In
this work, we propose xFraud, an explainable fraud transaction prediction
framework which is mainly composed of a detector and an explainer. The xFraud
detector can effectively and efficiently predict the legitimacy of incoming
transactions. Specifically, it utilizes a heterogeneous graph neural network to
learn expressive representations from the informative heterogeneously typed
entities in the transaction logs. The explainer in xFraud can generate
meaningful and human-understandable explanations from graphs to facilitate
further processes in the business unit. In our experiments with xFraud on real
transaction networks with up to 1.1 billion nodes and 3.7 billion edges, xFraud
is able to outperform various baseline models in many evaluation metrics while
remaining scalable in distributed settings. In addition, we show that xFraud
explainer can generate reasonable explanations to significantly assist the
business analysis via both quantitative and qualitative evaluations.
Related papers
- Across-Platform Detection of Malicious Cryptocurrency Transactions via Account Interaction Learning [19.2372535101502]
Existing malicious transaction detection methods rely on large amounts of labeled data.
We propose ShadowEyes, a novel malicious transaction detection method.
We conduct extensive experiments using public datasets to evaluate the performance of ShadowEyes.
arXiv Detail & Related papers (2024-10-31T02:01:42Z) - SEFraud: Graph-based Self-Explainable Fraud Detection via Interpretative Mask Learning [19.774363067972725]
Graph-based fraud detection has widespread application in modern industry scenarios, such as spam review and malicious account detection.
Previous works have attempted to generate explanations for specific instances using post-hoc explaining methods such as a GNNExplainer.
We propose SEFraud, a novel graph-based self-explainable fraud detection framework that simultaneously tackles fraud detection and result in interpretability.
arXiv Detail & Related papers (2024-06-17T10:18:53Z) - Generative Pretraining at Scale: Transformer-Based Encoding of
Transactional Behavior for Fraud Detection [0.0]
Our model confronts token explosion and reconstructs behavioral sequences, providing a nuanced understanding of transactional behavior.
We integrate a differential convolutional approach to enhance anomaly detection, bolstering the security and efficacy of one of the largest online payment merchants in China.
arXiv Detail & Related papers (2023-12-22T03:15:17Z) - Topology-Agnostic Detection of Temporal Money Laundering Flows in
Billion-Scale Transactions [0.03626013617212666]
We propose a framework to efficiently construct a temporal graph of sequential transactions.
We evaluate the scalability and the effectiveness of our framework against two state-of-the-art solutions for detecting suspicious flows of transactions.
arXiv Detail & Related papers (2023-09-24T15:11:58Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Byzantine-Robust Online and Offline Distributed Reinforcement Learning [60.970950468309056]
We consider a distributed reinforcement learning setting where multiple agents explore the environment and communicate their experiences through a central server.
$alpha$-fraction of agents are adversarial and can report arbitrary fake information.
We seek to identify a near-optimal policy for the underlying Markov decision process in the presence of these adversarial agents.
arXiv Detail & Related papers (2022-06-01T00:44:53Z) - Fighting Money Laundering with Statistics and Machine Learning [95.42181254494287]
There is little scientific literature on statistical and machine learning methods for anti-money laundering.
We propose a unifying terminology with two central elements: (i) client risk profiling and (ii) suspicious behavior flagging.
arXiv Detail & Related papers (2022-01-11T21:31:18Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - ScoreGAN: A Fraud Review Detector based on Multi Task Learning of
Regulated GAN with Data Augmentation [50.779498955162644]
We propose ScoreGAN for fraud review detection that makes use of both review text and review rating scores in the generation and detection process.
Results show that the proposed framework outperformed the existing state-of-the-art framework, namely FakeGAN, in terms of AP by 7%, and 5% on the Yelp and TripAdvisor datasets.
arXiv Detail & Related papers (2020-06-11T16:15:06Z) - DFraud3- Multi-Component Fraud Detection freeof Cold-start [50.779498955162644]
The Cold-start is a significant problem referring to the failure of a detection system to recognize the authenticity of a new user.
In this paper, we model a review system as a Heterogeneous InformationNetwork (HIN) which enables a unique representation to every component.
HIN with graph induction helps to address the camouflage issue (fraudsterswith genuine reviews) which has shown to be more severe when it is coupled with cold-start, i.e., new fraudsters with genuine first reviews.
arXiv Detail & Related papers (2020-06-10T08:20:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.