論文の概要: Wide-band butterfly network: stable and efficient inversion via
multi-frequency neural networks
- arxiv url: http://arxiv.org/abs/2011.12413v2
- Date: Thu, 28 Oct 2021 22:07:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 12:09:16.642780
- Title: Wide-band butterfly network: stable and efficient inversion via
multi-frequency neural networks
- Title(参考訳): 広帯域バタフライネットワーク:多周波ニューラルネットワークによる安定かつ効率的なインバージョン
- Authors: Matthew Li and Laurent Demanet and Leonardo Zepeda-N\'u\~nez
- Abstract要約: 広帯域散乱データから逆散乱マップを近似するために,広帯域蝶ネットワーク(WideBNet)と呼ばれるエンドツーエンドのディープラーニングアーキテクチャを導入する。
このアーキテクチャでは、バタフライの分解のような計算調和解析や、クーリー・テューキーFFTアルゴリズムのような伝統的なマルチスケール手法のツールが組み込まれている。
- 参考スコア(独自算出の注目度): 1.2891210250935143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an end-to-end deep learning architecture called the wide-band
butterfly network (WideBNet) for approximating the inverse scattering map from
wide-band scattering data. This architecture incorporates tools from
computational harmonic analysis, such as the butterfly factorization, and
traditional multi-scale methods, such as the Cooley-Tukey FFT algorithm, to
drastically reduce the number of trainable parameters to match the inherent
complexity of the problem. As a result WideBNet is efficient: it requires fewer
training points than off-the-shelf architectures, and has stable training
dynamics, thus it can rely on standard weight initialization strategies. The
architecture automatically adapts to the dimensions of the data with only a few
hyper-parameters that the user must specify. WideBNet is able to produce images
that are competitive with optimization-based approaches, but at a fraction of
the cost, and we also demonstrate numerically that it learns to super-resolve
scatterers in the full aperture scattering setup.
- Abstract(参考訳): 広帯域散乱データから逆散乱マップを近似するための広帯域蝶ネットワーク(WideBNet)と呼ばれるエンドツーエンドのディープラーニングアーキテクチャを提案する。
このアーキテクチャは、バタフライ因子化のような計算調和解析や、クーリー・テューキーFFTアルゴリズムのような従来のマルチスケールの手法を取り入れて、問題の固有の複雑さに合わせてトレーニング可能なパラメータの数を劇的に削減している。
その結果、WideBNetは効率が良く、オフザシェルフアーキテクチャよりもトレーニングポイントを少なくし、安定したトレーニングダイナミクスを持つため、標準のウェイト初期化戦略に頼ることができる。
アーキテクチャは、ユーザが指定しなければならない数個のハイパーパラメータで自動的にデータの寸法に適応する。
WideBNetは最適化に基づくアプローチと競合する画像を生成することができるが、そのコストはごくわずかであり、また全開口散乱装置における散乱器の超解法を学ぶことを数値的に示す。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
我々は,学習エポックの数の増加とともに,ほぼゼロに近いトレーニング損失を達成するための最適化保証について検討した。
トレーニングサンプル数に対する閾値は,ネットワーク幅の増加とともに増加することを示す。
論文 参考訳(メタデータ) (2023-09-12T13:03:47Z) - Split-Boost Neural Networks [1.1549572298362787]
本稿では,スプリットブートと呼ばれるフィードフォワードアーキテクチャの革新的なトレーニング戦略を提案する。
このような新しいアプローチは、最終的に正規化項を明示的にモデル化することを避けることができる。
提案した戦略は、ベンチマーク医療保険設計問題内の実世界の(匿名化された)データセットでテストされる。
論文 参考訳(メタデータ) (2023-09-06T17:08:57Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
画像超解像(SR)は、CNNからトランスフォーマーアーキテクチャへの広範なニューラルネットワーク設計を目撃している。
本研究は,市販のネットワーク設計を生かし,基礎となる計算オーバーヘッドを低減するため,超高解像度イテレーションにおけるネットワークプルーニングの可能性について検討する。
本研究では, ランダムネットワークのスパース構造を最適化し, 重要でない重みを小さめに微調整することにより, 反復型軟収縮率(ISS-P)法を提案する。
論文 参考訳(メタデータ) (2023-03-16T21:06:13Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Patch Based Transformation for Minimum Variance Beamformer Image
Approximation Using Delay and Sum Pipeline [0.0]
本研究では,空間内の固定領域に対する遅延補償無線周波数(RF)パッチをU-Netアーキテクチャによって変換するパッチレベルU-Netベースニューラルネットワークを提案する。
提案手法は、ネットワークのパラメータにおけるMVDR手法によって行われるデータ駆動重み適応を考慮に入れた、RFデータ空間の非線形変換を扱う。
論文 参考訳(メタデータ) (2021-10-19T19:36:59Z) - Learning to Beamform in Heterogeneous Massive MIMO Networks [48.62625893368218]
大規模マルチインプット多重出力(MIMO)ネットワークにおいて最適なビームフォーマを見つけることはよく知られている問題である。
本稿では,この問題に対処するための新しい深層学習に基づく論文アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-11-08T12:48:06Z) - Sparse Linear Networks with a Fixed Butterfly Structure: Theory and
Practice [4.3400407844814985]
本稿では,バタフライネットワークに基づくアーキテクチャにより,ニューラルネットワーク内の密度線形層を置き換えることを提案する。
NLPデータと視覚データの両方の教師付き予測を含む実験のコレクションでは、これは単に既存のよく知られたアーキテクチャにマッチする結果をもたらすだけでなく、時には優れた結果をもたらすことを示す。
論文 参考訳(メタデータ) (2020-07-17T09:45:03Z) - Large-Scale Gradient-Free Deep Learning with Recursive Local
Representation Alignment [84.57874289554839]
大規模データセット上でディープニューラルネットワークをトレーニングするには、重要なハードウェアリソースが必要である。
これらのネットワークをトレーニングするためのワークホースであるバックプロパゲーションは、本質的に並列化が難しいシーケンシャルなプロセスである。
本稿では、深層ネットワークのトレーニングに使用できるバックプロップに代わる、神経生物学的に有望な代替手段を提案する。
論文 参考訳(メタデータ) (2020-02-10T16:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。