論文の概要: UFPR-Periocular: A Periocular Dataset Collected by Mobile Devices in
Unconstrained Scenarios
- arxiv url: http://arxiv.org/abs/2011.12427v1
- Date: Tue, 24 Nov 2020 22:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 13:37:07.599478
- Title: UFPR-Periocular: A Periocular Dataset Collected by Mobile Devices in
Unconstrained Scenarios
- Title(参考訳): ufpr-periocular: 制約のないシナリオでモバイルデバイスが収集するペリオクシャルデータセット
- Authors: Luiz A. Zanlorensi and Rayson Laroca and Diego R. Lucio and Lucas R.
Santos and Alceu S. Britto Jr. and David Menotti
- Abstract要約: 1,122名の被験者のサンプルを含む新しい眼球周囲データセットを,196個の異なるモバイルデバイスで3セッションで取得した。
画像は、参加者にたった1つの指示で、制約のない環境下で撮影された。
- 参考スコア(独自算出の注目度): 4.229481360022994
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, ocular biometrics in unconstrained environments using images
obtained at visible wavelength have gained the researchers' attention,
especially with images captured by mobile devices. Periocular recognition has
been demonstrated to be an alternative when the iris trait is not available due
to occlusions or low image resolution. However, the periocular trait does not
have the high uniqueness presented in the iris trait. Thus, the use of datasets
containing many subjects is essential to assess biometric systems' capacity to
extract discriminating information from the periocular region. Also, to address
the within-class variability caused by lighting and attributes in the
periocular region, it is of paramount importance to use datasets with images of
the same subject captured in distinct sessions. As the datasets available in
the literature do not present all these factors, in this work, we present a new
periocular dataset containing samples from 1,122 subjects, acquired in 3
sessions by 196 different mobile devices. The images were captured under
unconstrained environments with just a single instruction to the participants:
to place their eyes on a region of interest. We also performed an extensive
benchmark with several Convolutional Neural Network (CNN) architectures and
models that have been employed in state-of-the-art approaches based on
Multi-class Classification, Multitask Learning, Pairwise Filters Network, and
Siamese Network. The results achieved in the closed- and open-world protocol,
considering the identification and verification tasks, show that this area
still needs research and development.
- Abstract(参考訳): 近年,可視光で得られた画像を用いた非拘束環境における眼の生体計測が研究者の注目を集めている。
眼窩認識は、オクルージョンや低解像度のため虹彩形質が得られない場合に代替手段となることが示されている。
しかしながら、眼窩形質は虹彩形質に示される高い特異性を持っていない。
したがって、多くの主題を含むデータセットを使用することは、生体認証システムの能力を評価し、眼周囲領域から識別情報を抽出するのに不可欠である。
また、眼窩領域の照明や属性によって生じるクラス内変動に対処するため、異なるセッションでキャプチャされた同じ主題の画像を含むデータセットを使用することが最重要となる。
文献で利用可能なデータセットはこれらの要因をすべて示さないため,本研究では,1,122名の被験者が3セッションで取得した1,196名の異なるモバイルデバイスから得られたサンプルを含む新しい眼周囲データセットを提案する。
画像は、参加者にたった1つの指示で、制約のない環境下で撮影された。
また,複数の畳み込みニューラルネットワーク (cnn) アーキテクチャとモデルを用いて,マルチクラス分類,マルチタスク学習,ペアワイズフィルタネットワーク,シャムネットワークに基づく最先端手法を用いた広範なベンチマークを行った。
クローズド・オープン・ワールド・プロトコルで達成された成果は、同定と検証のタスクを考慮して、この分野にはまだ研究と開発が必要であることを示している。
関連論文リスト
- Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Diffusion Facial Forgery Detection [56.69763252655695]
本稿では,顔に焦点をあてた拡散生成画像を対象とした包括的データセットであるDiFFを紹介する。
人体実験といくつかの代表的な偽造検出手法を用いて,DiFFデータセットの広範な実験を行った。
その結果、人間の観察者と自動検出者の2値検出精度は30%以下であることが判明した。
論文 参考訳(メタデータ) (2024-01-29T03:20:19Z) - Image complexity based fMRI-BOLD visual network categorization across
visual datasets using topological descriptors and deep-hybrid learning [3.522950356329991]
本研究の目的は,視覚的データセットと異なる視覚刺激に応答して,ネットワークトポロジがどう異なるかを検討することである。
これを実現するために、COCO、ImageNet、SUNを表す視覚ネットワーク毎に0次元および1次元の永続図を演算する。
抽出したK平均クラスター特徴は、これらの視覚ネットワークの分類において90%-95%の範囲で精度の高い新しいディープハイブリッドモデルに供給される。
論文 参考訳(メタデータ) (2023-11-03T14:05:57Z) - Periocular biometrics: databases, algorithms and directions [69.35569554213679]
近視バイオメトリックスは、制御されていない条件下での虹彩や顔のシステムの性能に関する懸念から、独立したモダリティとして確立されている。
本稿では, 近視バイオメトリックス研究における最先端技術について概説する。
論文 参考訳(メタデータ) (2023-07-26T11:14:36Z) - Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle
Phenotypes [0.5076419064097732]
本稿では,多数の画像の必要性を軽減するために,自己教師付き識別器を用いた改良型CycleGANアーキテクチャを提案する。
また, 生物学的データセットを用いて, 明らかな細胞表現型および非予防的な細胞表現型変異について検討した。
論文 参考訳(メタデータ) (2023-01-21T16:25:04Z) - Periocular Biometrics: A Modality for Unconstrained Scenarios [66.93179447621188]
眼球周囲のバイオメトリックスには、眼窩を囲む顔の外部から見える領域が含まれる。
新型コロナウイルス(COVID-19)のパンデミックは、コントロールされた設定でも目に見える唯一の顔領域であり、その重要性を強調している。
論文 参考訳(メタデータ) (2022-12-28T12:08:27Z) - EllSeg-Gen, towards Domain Generalization for head-mounted eyetracking [19.913297057204357]
このようなアーティファクトの存在にもかかわらず、畳み込みネットワークは視線特徴の抽出に優れていることを示す。
複数のデータセットでトレーニングされた単一モデルのパフォーマンスを、個々のデータセットでトレーニングされたモデルのプールと比較する。
その結果, 眼球画像を用いたモデルでは, マルチセットトレーニングにより, 外観の多様性が向上することが示唆された。
論文 参考訳(メタデータ) (2022-05-04T08:35:52Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
データ隠蔽タスクでは、異なる耐久性を有するため、カバー画像の各ピクセルを別々に扱う必要がある。
Inverse Gradient Attention (IGA) を用いた新しい深層データ隠蔽方式を提案する。
実証的な実験により、提案モデルが2つの先行するデータセット上で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-11-21T19:08:23Z) - Microscopic fine-grained instance classification through deep attention [7.50282814989294]
限られたサンプルを用いた微視的画像データのきめ細かい分類は、コンピュータビジョンとバイオメディカルイメージングにおいて未解決の問題である。
本稿では,エンドツーエンドで2つのタスクを同時に実行する,シンプルで効果的なディープネットワークを提案する。
その結果、堅牢だが軽量なエンドツーエンドのトレーニング可能なディープネットワークが実現し、最先端の結果が得られます。
論文 参考訳(メタデータ) (2020-10-06T15:29:58Z) - Cross-Spectral Periocular Recognition with Conditional Adversarial
Networks [59.17685450892182]
本研究では,近赤外・近赤外スペクトル間の近赤外画像の変換を訓練した条件付き生成逆相関ネットワークを提案する。
EER=1%, GAR>99% @ FAR=1%, ポリUデータベースの最先端技術に匹敵するスペクトル近視性能を得た。
論文 参考訳(メタデータ) (2020-08-26T15:02:04Z) - SIP-SegNet: A Deep Convolutional Encoder-Decoder Network for Joint
Semantic Segmentation and Extraction of Sclera, Iris and Pupil based on
Periocular Region Suppression [8.64118000141143]
マルチモーダル生体認証システムは 生体認証システムの限界に 対処する能力がある
このようなシステムには高い特性、永続性、性能があるが、他の生体特性に基づく技術は容易に妥協できる。
SIP-SegNetと呼ばれる新しい深層学習フレームワークが提案され、眼形質のセマンティックセマンティックセグメンテーションを行う。
論文 参考訳(メタデータ) (2020-02-15T15:20:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。